
Advances in Artificial Intelligence for Data
Visualization: Developing Computer Vision
Models to Automate Reading of Data Plots,
with Application to Regression Diagnostics

Weihao Li
B.Comm. (Hons), Monash University

A thesis submitted for the degree of
Doctor of Philosophy

at Monash University in 2024
Department of Econometrics & Business Statistics

Table of contents

Copyright notice v

Abstract 1

Declaration 2

Acknowledgements 4

1 Introduction 0
1.1 Thesis Outline . 1

2 A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol 3
2.1 Introduction . 3
2.2 Background . 5
2.3 Calculation of Statistical Significance and Test Power . 10
2.4 Experimental Design . 11
2.5 Results . 16
2.6 Limitations and Practicality . 23
2.7 Conclusions . 25

3 Automated Assessment of Residual Plots with Computer Vision Models 27
3.1 Introduction . 27
3.2 Model Specifications . 30
3.3 Distance from a Theoretically “Good” Residual Plot . 33
3.4 Distance Estimation . 36
3.5 Statistical Testing . 37
3.6 Model Violations Index . 39
3.7 Data Generation . 40
3.8 Model Architecture . 46
3.9 Model Training . 48
3.10 Results . 50
3.11 Examples . 56
3.12 Limitations and Future Work . 64
3.13 Conclusions . 66

4 Software for Automated Residual Plot Assessment: autovi and autovi.web 68
4.1 Introduction . 68
4.2 R package: autovi . 70
4.3 Web interface: autovi.web . 91
4.4 Conclusions . 99

iii

Advances in Artificial Intelligence for Data Visualization

4.5 Availability . 101

5 Conclusion and future plans 107
5.1 Contributions . 107
5.2 Future work . 108

Bibliography 110

Appendices 118

A Appendix to “A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the
Lineup Protocol” 118
A.1 Additional Details of Testing Procedures . 118
A.2 Additional Details of Experimental Setup . 125
A.3 Analysis of Results Relative to Data Collection Process 130

B Appendix to “Automated Assessment of Residual Plots with Computer vision Models” 137
B.1 Neural Network Layers Used in the Study . 137

C Appendix to “Software for Automated Residual Plot Assessment: autovi and autovi.web”140
C.1 Extending the AUTO_VI class . 140

iv

Copyright notice

Produced on 4 September 2024.

© Weihao Li (2024).

v

Abstract

This work is motivated by the need for an automated approach to diagnose regression models through

residual plots with reliability and consistency. While numerical hypothesis tests are commonly used,

residual plots remain essential in regression diagnostics because conventional tests are limited to

specific types of model departures and tend to be overly sensitive. Visual inference using the lineup

protocol offers a less sensitive and more broadly applicable alternative, yet its dependence on human

judgment limits scalability. This research addresses these limitations by automating the assessment

process.

This research presents three original contributions. The first contribution provides evidence for

the effectiveness of visual inference in regression diagnostics through a human subject experiment,

demonstrating the benefits of using the lineup protocol for reliable and consistent reading of residual

plots. The second contribution introduces a computer vision model to automate the assessment of

residual plots, addressing the scalability limitation of the lineup protocol. The third contribution

presents an R package and Shiny app, providing a user-friendly interface for analysts to leverage the

computer vision model and supporting tools for diagnostic purposes. These contributions advance the

field of artificial intelligence for data visualization, enabling more efficient and accurate regression

diagnostics.

1

Declaration

I hereby declare that this thesis contains no material which has been accepted for the award of

any other degree or diploma at any university or equivalent institution and that, to the best of my

knowledge and belief, this thesis contains no material previously published or written by another

person, except where due reference is made in the text of the thesis.

This thesis includes one original papers published in a peer reviewed journal and two unpublished

papers. The core theme of the thesis is “automated reading of residual plots”. The ideas, development

and writing up of all the papers in the thesis were the principal responsibility of myself, the student,

working within the Department of Econometrics and Business Statistics under the supervision of

Professor Dianne Cook, Dr Emi Tanaka (Australian National University), Assistant Professor Susan

VanderPlas (University of Nebraska–Lincoln) and Assistant Professor Klaus Ackermann.

The inclusion of co-authors reflects the fact that the work came from active collaboration between re-

searchers and acknowledges input into team-based research. In the case of Chapter 2, my contribution

to the work involved the following:

Chapter Publication title Status Student
contribution

Co-authors
contribution

Coauthors
are
Monash
stu-
dents

2 A Plot is Worth a
Thousand Tests:
Assessing Residual
Diagnostics with the
Lineup Protocol

Published in the Journal
of Computational and
Graphical Statistics

80% Concept,
Analysis,
Software,
Writing

D. Cook 10%, E.
Tanaka 5%, S.
VanderPlas 5%

No

Chapters 3, Automated Assessment of Residual Plots with Computer Vision Models, and Chapter 4,

Software for Automated Residual Plot Assessment: autovi and autovi.web, are planned for submission

to peer-reviewed journals.

2

Advances in Artificial Intelligence for Data Visualization

To ensure the clarity and coherence of the written content, artificial intelligence tools were employed

to assist in smoothing and refining the language throughout the thesis.

I have not renumbered sections of submitted or published papers in order to generate a consistent

presentation within the thesis.

Student name: Weihao Li

Student signature:

Date: 4th September 2024

I hereby certify that the above declaration correctly reflects the nature and extent of the student’s

and co-authors’ contributions to this work. In instances where I am not the responsible author I have

consulted with the responsible author to agree on the respective contributions of the authors.

Main Supervisor name: Dianne Cook

Main Supervisor signature:

Date: 4th September 2024

3

Acknowledgements

This thesis would not be possible without the support of many people.

First, I would like to express my deepest gratitude to my supervisors, Dianne Cook, Emi Tanaka,

Susan VanderPlas, and Klaus Ackermann. Their exceptional guidance and insights into statistical

graphics and computer vision models during my PhD have been invaluable. I am profoundly inspired

by their enthusiasm, vision, and dynamic approach to our work.

I am also grateful to my PhD cohort, including, but not limited to, Ze-Yu Zhong, Cynthia Huang,

Jayani Lakshika, Janith Wanniarachchi, Harriet Mason, Sherry Zhang, and Mitchell O’Hara-Wild, for

their insightful conversations on software development and methodology that greatly influenced this

thesis. I also sincerely thank Catherine Forbes, Kate Saunders, and Michael Lydeamore, whose expert

suggestions as panel members proved invaluable during the challenging moments of my PhD journey.

Last but not least, I would like to thank my family for their support.

4

Chapter 1

Introduction

Model diagnostics are critical in evaluating the accuracy and validity of a statistical model. In

the context of regression diagnostics, a common practice is to plot residuals against fitted values,

which serves as a starting point for evaluating the adequacy of the fit and verifying the underlying

assumptions. Visual diagnostics are frequently preferred or recommended (Cook and Weisberg 1982;

Draper and Smith 1998; Montgomery et al. 1982) due to the possibility of discovering abstract and

unquantifiable insights, however, it can be subject to over-interpretation or even neglect.

Buja et al. (2009a) introduced a visual inference framework that formalised a hypothesis testing of

graphical representations of data (henceforth referred to as the data plot) via the lineup protocol. The

protocol is inspired by the police lineup technique employed in eyewitness identification of criminal

suspects. Briefly, the protocol comprises m randomly positioned plots, where one position presents

the data plot, while the remaining m− 1 plots present the plots with the same graphical structure,

except that the data has been replaced with data consistent with the null hypothesis H0 (henceforth

referred to as null plots). To compute the p-value of the visual test, the lineup will be independently

presented to a number of participants, asking them to pick the most different plot. Under H0, the data

plot is expected to be indistinguishable from the null plots, and the probability of correctly identifying

the data plot by an observer is 1/m. If a large number of participants correctly identify the data plot,

the corresponding p-value will be small, indicating strong evidence against H0. This protocol provides

a calibration of the data plot against the null plots, ensuring that the data plot is not over-interpreted.

The lineup protocol has gained increasing traction in recent years and has already been integrated into

data analysis of various topics (see Krishnan and Hofmann 2021; Loy and Hofmann 2013; Savvides et

al. 2023; Widen et al. 2016). However, the reliance of human assessment is a fundamental aspect of

visual tests, which may restrict its widespread usage. The lineup protocol is unsuitable for large-scale

0

Advances in Artificial Intelligence for Data Visualization

applications, due to its high labour costs and time requirements. Moreover, it presents significant

usability issues for individuals with visual impairments, resulting in reduced accessibility.

To address these limitations, this thesis proposes a computer vision-based approach to automate the

visual inference process for assessment of linear regression residual plots. Modern computer vision

models often use a convolutional neural network to process digital images to perform various tasks

(e.g. object detection, object identification and signal processing). The development for computer

vision models has primarily focused on processing natural images, such as photographs and videos,

and its adaptation for data plots has some success (e.g. classification of time series images in Hatami

et al. 2018a) but generally limited in development. The development of computer vision models for

the assessment of residual plots will make the process more efficient, consistent, and accessible.

1.1 Thesis Outline
The thesis is structured as follows.

Chapter 2 provides empirical evidence supporting the indispensability of residual plots through a

visual inference experiment using the lineup protocol. By comparing human evaluations of residual

plots to conventional statistical tests, this chapter demonstrates the advantages of graphical methods

in detecting practical issues with model fit, while also highlighting the limitations of conventional

tests in producing overly sensitive results. The chapter contains a comprehensive literature review

related to residual diagnostics.

Chapter 3 introduces a computer vision model to automate the assessment of residual plots, ad-

dressing the scalability limitations of human-based visual inference. This model is trained to predict

a distance measure based on Kullback-Leibler divergence, quantifying the disparity between the

residual distribution of a fitted classical normal linear regression model and the reference distribution.

Performance of the model is evaluated on the human subject experiment data collected in Chapter 2.

A comprehensive literature review of data plots reading with computer vision models is contained in

the chapter.

Chapter 4 introduces a new R package, autovi, and its accompanying web interface, autovi.web,

designed to automate the assessment of residual plots in regression analysis. The package uses

a computer vision model built in Chapter 3 to predict a measure of visual signal strength (VSS)

and provides supporting information to assist analysts in diagnosing model fit. By automating this

process, autovi and autovi.web improve the efficiency and consistency of model evaluation, making

advanced diagnostic tools accessible to a broader audience.

Chapter 5 summarises the contribution of the work and the (potential) impact, and discusses some

1

Advances in Artificial Intelligence for Data Visualization

future plans.

2

Chapter 2

A Plot is Worth a Thousand Tests: Assess-

ing Residual Diagnostics with the Lineup

Protocol

Regression experts consistently recommend plotting residuals for model diagnosis, despite the avail-

ability of many numerical hypothesis test procedures designed to use residuals to assess problems

with a model fit. Here we provide evidence for why this is good advice using data from a visual

inference experiment. We show how conventional tests are too sensitive, which means that too often

the conclusion would be that the model fit is inadequate. The experiment uses the lineup protocol

which puts a residual plot in the context of null plots. This helps generate reliable and consistent

reading of residual plots for better model diagnosis. It can also help in an obverse situation where

a conventional test would fail to detect a problem with a model due to contaminated data. The

lineup protocol also detects a range of departures from good residuals simultaneously. Supplemental

materials for the article are available online.

2.1 Introduction
“Since all models are wrong the scientist must be alert to what is importantly wrong.” (Box

1976)

Diagnosing a model is an important part of building an appropriate model. In linear regression

analysis, studying the residuals from a model fit is a common diagnostic activity. Residuals summarise

what is not captured by the model, and thus provide the capacity to identify what might be wrong.

We can assess residuals in multiple ways. To examine the univariate distribution, residuals may be

3

Advances in Artificial Intelligence for Data Visualization

plotted as a histogram or normal probability plot. Using the classical normal linear regression model

as an example, if the distribution is symmetric and unimodal, we would consider it to be well-behaved.

However, if the distribution is skewed, bimodal, multimodal, or contains outliers, there would be

cause for concern. We can also inspect the distribution by conducting a goodness-of-fit test, such as

the Shapiro-Wilk normality test (Shapiro and Wilk 1965).

Scatterplots of residuals against the fitted values, and each of the explanatory variables, are commonly

used to scrutinize their relationships. If there are any visually discoverable associations, the model is

potentially inadequate or incorrectly specified. We can also potentially discover patterns not directly

connected to a linear model assumption from these residual plots, such as the discreteness or skewness

of the fitted values, and outliers. To read residual plots, one looks for noticeable departures from the

model such as non-linear pattern or heteroskedasticity. A non-linear pattern would suggest that the

model needs to have some additional non-linear terms. Heteroskedasticity suggests that the error is

dependent on the predictors, and hence violates the independence assumption. Statistical tests were

developed to provide objective assessment, for example, of non-linear patterns (e.g. Ramsey 1969),

and heteroskedasticity (e.g. Breusch and Pagan 1979).

The common wisdom of experts is that plotting the residuals is indispensable for diagnosing model fits

(Cook and Weisberg 1982; Draper and Smith 1998; Montgomery et al. 1982). The lack of empirical

evidence for the ubiquitous advice is curious, and is what this article tackles.

Additionally, relying solely on the subjective assessment of a single plot can be problematic. People

will almost always see a pattern (see Kahneman 2011), so the question that really needs answering

is whether any pattern perceived is consistent with randomness, or sampling variability, or noise.

Correctly judging whether no pattern exists in a residual plot is a difficult task. Loy (2021) emphasizes

that this is especially difficult to teach to new analysts and students, and advocates to the broader

use of the lineup protocol (Buja et al. 2009b).

The lineup protocol places a data plot in a field of null plots, allowing for a comparison of patterns

due purely by chance to what is perceived in the data plot. For residual analysis this is especially

helpful for gauging whether there is no pattern. (Figure 2.1 shows an example of a lineup of residual

plots.) In its strict use, one would insist that the data plot is not seen before seeing the lineup, so

that the observer does not know which is the true plot. When used this way, it provides an objective

test for data plots. Majumder et al. (2013a) validated that results from lineups assessed by human

observers performed similarly to conventional tests. One would not use a lineup when a conventional

test exists and is adequate because it is more manually expensive to conduct. However, where no

adequate conventional test exists, it is invaluable, as shown by Loy and Hofmann (2013). Here we use

4

Advances in Artificial Intelligence for Data Visualization

the lineup as a vehicle to rigorously explore why experts advise that residual plots are indispensable

despite the prevalence of numerical tests.

The paper is structured as follows. Section 2.2 describes the background on the types of departures

that one expects to detect, and outlines a formal statistical process for reading residual plots, called

visual inference. Section 2.3 describes the calculation of the statistical significance and power of the

test. Section 2.4 details the experimental design to compare the decisions made by formal hypothesis

testing, and how humans would read diagnostic plots. The results are reported in Section 2.5. We

conclude with a discussion of the presented work, and ideas for future directions.

2.2 Background

2.2.1 Departures from Good Residual Plots

Graphical summaries where residuals are plotted against fitted values, or other functions of the

predictors (expected to be approximately orthogonal to the residuals) are considered to be the most

important residual plots by Cook and Weisberg (1999). Figure 2.2A shows an example of an ideal

residual plot where points are symmetrically distributed around the horizontal zero line (red), with no

discernible patterns. There can be various types of departures from this ideal pattern. Non-linearity,

heteroskedasticity and non-normality, shown in Figure 2.2B, Figure 2.2C, and Figure 2.2D, respectively,

are three commonly checked departures.

Model misspecification occurs if functions of predictors that needed to accurately describe the

relationship with the response are incorrectly specified. This includes instances where a higher-order

polynomial term of a predictor is wrongfully omitted. Any non-linear pattern visible in the residual

plot could be indicative of this problem. An example residual plot containing visual pattern of

non-linearity is shown in Figure 2.2B. One can clearly observe the “S-shape” from the residual plot,

which corresponds to the cubic term that should have been included in the model.

Heteroskedasticity refers to the presence of non-constant error variance in a regression model. It

indicates that the distribution of residuals depends on the predictors, violating the independence

assumption. This can be seen in a residual plot as an inconsistent spread of the residuals relative

to the fitted values or predictors. An example is the “butterfly” shape shown in Figure 2.2C, or

a “left-triangle” and “right-triangle” shape where the smallest variance occurs at one side of the

horizontal axis.

Figure 2.2D shows a scatterplot where the residuals have a skewed distribution, as seen by the uneven

vertical spread. Unlike non-linearity and heteroskedasticity, non-normality is usually detected with

a different type of residual plot: a histogram or a normal probability plot. Because we focus on

5

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 2.1: Visual testing is conducted using a lineup, as in the example here. The residual plot computed
from the observed data is embedded among 19 null plots, where the residuals are simulated
from a standard error model. Computing the p-value requires that the lineup be examined
by a number of human judges, each asked to select the most different plot. A small p-value
would result from a substantial number selecting the data plot (at position 6, exhibiting
non-linearity).

scatterplots, non-normality is not one of the departures examined in depth in this paper. (Loy et al.

2016 discuss related work on non-normality checking.)

2.2.2 Conventionally Testing for Departures

Many different hypothesis tests are available to detect specific model defects. For example, the

presence of heteroskedasticity can usually be tested by applying the White test (White 1980) or

the Breusch-Pagan (BP) test (Breusch and Pagan 1979), which are both derived from the Lagrange

6

Advances in Artificial Intelligence for Data Visualization

(A) Good residuals (B) Non−linearity (C) Heteroskedasticity (D) Non−normality

Figure 2.2: Example residual vs fitted value plots (horizontal line indicates 0): (A) classically good
looking residuals, (B) non-linear pattern indicates that the model has not captured a non-
linear association, (C) heteroskedasticity indicating that variance around the fitted model
is not uniform, and (D) non-normality where the residual distribution is not symmetric
around 0. The latter pattern might best be assessed using a univariate plot of the residuals,
but patterns B and C need to be assessed using a residual vs fitted value plot.

multiplier test (Silvey 1959) principle that relies on the asymptotic properties of the null distribution.

To test specific forms of non-linearity, one may apply the F-test as a model structural test to examine

the significance of a specific polynomial and non-linear forms of the predictors, or the significance

of proxy variables as in the Ramsey Regression Equation Specification Error Test (RESET) (Ramsey

1969). The Shapiro-Wilk (SW) normality test (Shapiro and Wilk 1965) is the most widely used test

of non-normality included by many of the statistical software programs. The Jarque-Bera test (Jarque

and Bera 1980) is also used to directly check whether the sample skewness and kurtosis match a

normal distribution.

Table 2.1 displays the p-values from the RESET, BP and SW tests applied to the residual plots in

Figure 2.2. The RESET test and BP test were computed using the resettest and bptest functions

from the R package lmtest, respectively. The SW test was computed using the shapiro.test from

the core R package stats. 1 The RESET test requires the selection of a power parameter. Ramsey

(1969) recommends a power of four, which we adopted in our analysis.

For residual plots in Figure 2.2, we would expect the RESET test for non-linearity to reject residual

plot B, the BP test for heteroskedasticity to reject the residual plot C, and the SW test for non-normality

to reject residual plot D, which they all do and all tests also correctly fail to reject residual plot A.

Interestingly, the BP and SW tests also reject the residual plots exhibiting structure that they were

not designed for. Cook and Weisberg (1982) explain that most residual-based tests for a particular

departure from the model assumptions are also sensitive to other types of departures. This could be

considered a Type III error (Kimball 1957), where the null hypothesis of good residuals is correctly

rejected but for the wrong reason. Also, some types of departure can have elements of other types

1Although we did not use it, it is useful to know that the R package skedastic (Farrar 2020) also contains a large
collection of functions to test for heteroskedasticity.

7

Advances in Artificial Intelligence for Data Visualization

Table 2.1: Statistical significance testing for departures from good residuals for plots in Figure 2.2.
Shown are the p-values calculated for the RESET, the BP and the SW tests. The good residual
plot (A) is judged a good residual plot, as expected, by all tests. The non-linearity (B) is
detected by all tests, as might be expected given the extreme structure.

Plot Departures RESET BP SW

A None 0.779 0.133 0.728
B Non-linearity 0.000 0.000 0.039
C Heteroskedasticity 0.658 0.000 0.000
D Non-normality 0.863 0.736 0.000

of departure, for example, non-linearity can appear like heteroskedasticity. Additionally, other data

problems such as outliers can trigger rejection (or not) of the null hypothesis (Cook and Weisberg

1999).

With large sample sizes, hypothesis tests may reject the null hypothesis when there is only a small

effect. (A good discussion can be found in Kirk (1996).) While such rejections may be statistically

correct, their sensitivity may render the results impractical. A key goal of residual plot diagnostics is

to identify potential issues that could lead to incorrect conclusions or errors in subsequent analyses,

but minor defects in the model are unlikely to have a significant impact and may be best disregarded

for practical purposes. The experiment discussed in this paper specifically addresses this tension

between statistical significance and practical significance.

2.2.3 Visual Test Procedure based on Lineups

The examination of data plots to infer signals or patterns (or lack thereof) is fraught with variation in

the human ability to interpret and decode the information embedded in a graph (Cleveland and McGill

1984). In practice, over-interpretation of a single plot is common. For instance, Roy Chowdhury et

al. (2015) described a published example where authors over-interpreted separation between gene

groups from a two-dimensional projection of a linear discriminant analysis even when there were no

differences in the expression levels between the gene groups.

One solution to over-interpretation is to examine the plot in the context of natural sampling variability

assumed by the model, called the lineup protocol, as proposed in Buja et al. (2009a). Majumder et

al. (2013b) showed that the lineup protocol is analogous to the null hypothesis significance testing

framework. The protocol consists of m randomly placed plots, where one plot is the data plot, and

the remaining m− 1 plots, referred to as the null plots, are constructed using the same graphical

procedure as the data plot but the data is replaced with null data that is generated in a manner

consistent with the null hypothesis, H0. Then, an observer who has not seen the data plot is asked to

point out the most different plot from the lineup. Under H0, it is expected that the data plot would

8

Advances in Artificial Intelligence for Data Visualization

have no distinguishable difference from the null plots, and the probability that the observer correctly

picks the data plot is 1/m. If one rejects H0 as the observer correctly picks the data plot, then the

Type I error of this test is 1/m. This protocol requires a priori specification of H0 (or at least a null

data generating mechanism), much like the requirement of knowing the sampling distribution of the

test statistic in null hypothesis significance testing framework.

Figure Figure 2.1 is an example of a lineup protocol. If the data plot at position 6 is identifiable, then

it is evidence for the rejection of H0. In fact, the actual residual plot is obtained from a misspecified

regression model with missing non-linear terms.

Data used in the m− 1 null plots needs to be simulated. In regression diagnostics, sampling data

consistent with H0 is equivalent to sampling data from the assumed model. As Buja et al. (2009a)

suggested, H0 is usually a composite hypothesis controlled by nuisance parameters. Since regression

models can have various forms, there is no general solution to this problem, but it sometimes can be

reduced to a so called “reference distribution” by applying one of the three methods: (i) sampling

from a conditional distribution given a minimal sufficient statistic under H0, (ii) parametric bootstrap

sampling with nuisance parameters estimated under H0, and (iii) Bayesian posterior predictive

sampling. The conditional distribution given a minimal sufficient statistic is the best justified reference

distribution among the three (Buja et al. 2009a). Under this method, the null residuals can essentially

be simulated by independent drawing from a standard normal random distribution, then regressing

the draws on the predictors, and then re-scaling it by the ratio of the residual sum of square in two

regressions.

The effectiveness of lineup protocol for regression analysis has been validated by Majumder et al.

(2013b) under relatively simple settings with up to two predictors. Their results suggest that visual

tests are capable of testing the significance of a single predictor with a similar power to a t-test, though

they express that in general it is unnecessary to use visual inference if there exists a corresponding

conventional test, and they do not expect the visual test to perform equally well as the conventional

test. In their third experiment, where the contamination of the data violate the assumptions of the

conventional test, visual test outperforms the conventional test by a large margin. This supports the

use of visual inference in situations where there are no existing numerical testing procedures. Visual

inference has also been integrated into diagnostics for hierarchical linear models where the lineup

protocol is used to judge the assumptions of linearity, normality and constant error variance for both

the level-1 and level-2 residuals (Loy and Hofmann 2013, 2014, 2015).

9

Advances in Artificial Intelligence for Data Visualization

2.3 Calculation of Statistical Significance and Test Power

2.3.1 What is Being Tested?

In diagnosing a model fit using the residuals, we are generally interested in testing whether “the

regression model is correctly specified” (H0) against the broad alternative “the regression model is

misspecified” (Ha). However, it is practically impossible to test this broad H0 with conventional

tests, because they need specific structure causing the departure to be quantifiable in order to be

computable. For example, the RESET test for detecting non-linear departures is formulated by fitting

y = τ0 +
∑p

i=1τp xp + γ1 ŷ2 + γ2 ŷ3 + γ3 ŷ4 + u, u∼ N(0,σ2
u) in order to test H0 : γ1 = γ2 = γ3 = 0

against Ha : γ1 ̸= 0 or γ2 ̸= 0 or γ3 ̸= 0. Similarly, the BP test is designed to specifically test H0 : error

variances are all equal (ζi = 0 for i = 1, .., p) versus the alternative Ha : that the error variances are a

multiplicative function of one or more variables (at least one ζi ̸= 0) from e2 = ζ0+
∑p

i=1 ζi x i +u, u∼

N(0,σ2
u).

While a battery of conventional tests for different types of departures could be applied, this is intrinsic

to the lineup protocol. The lineup protocol operates as an omnibus test, able to detect a range of

departures from good residuals in a single application.

2.3.2 Statistical Significance

In hypothesis testing, a p-value is defined as the probability of observing test results at least as extreme

as the observed result assuming H0 is true. Conventional hypothesis tests usually have an existing

method to derive or compute the p-value based on the null distribution. The method to estimate a

p-value for a visual test essentially follows the process detailed by VanderPlas et al. (2021). Details

are given in Appendix A.1.

2.3.3 Power of the Tests

The power of a model misspecification test is the probability that H0 is rejected given the regression

model is misspecified in a specific way. It is an important indicator when one is concerned about

whether model assumptions have been violated. In practice, one might be more interested in knowing

how much the residuals deviate from the model assumptions, and whether this deviation is of practical

significance.

The power of a conventional hypothesis test is affected by both the true parameters θ and the sample

size n. These two can be quantified in terms of effect size E to measure the strength of the residual

departures from the model assumptions. Details about the calculation of effect size are provided in

Section 2.4.2 after the introduction of the simulation model used in our experiment. The theoretical

power of a test is sometimes not a trivial solution, but it can be estimated if the data generating

10

Advances in Artificial Intelligence for Data Visualization

process is known. We use a predefined model to generate a large set of simulated data under different

effect sizes, and record if the conventional test rejects H0. The probability of the conventional test

rejects H0 is then fitted by a logistic regression formulated as

Pr(reject H0|H1, E) = Λ
�

log
�

0.05
0.95

�

+ β1E
�

, (2.1)

where Λ(.) is the standard logistic function given as Λ(z) = exp(z)(1+ exp(z))−1. The effect size E is

the only predictor and the intercept is fixed to log(0.05/0.95) so that P̂ r(reject H0|H1, E = 0) = 0.05,

the desired significance level.

The power of a visual test on the other hand, may additionally depend on the ability of the particular

participant, as the skill of each individual may affect the number of observers who identify the data

plot from the lineup (Majumder et al. 2013b). To address this issue, Majumder et al. (2013b) models

the probability of participant j correctly picking the data plot from lineup l using a mixed-effect

logistic regression, with participants treated as random effects. Then, the estimated power of a visual

test evaluated by a single participant is the predicted value obtained from the mixed effects model.

However, this mixed effects model does not work with scenario where participants are asked to

select one or more most different plots. In this scenario, having the probability of a participant j

correctly picking the data plot from a lineup l is insufficient to determine the power of a visual test

because it does not provide information about the number of selections made by the participant

for the calculation of the p-value. Therefore, we directly estimate the probability of a lineup being

rejected by assuming that individual skill has negligible effect on the variation of the power. This

assumption essentially averages out the subject ability and helps to simplify the model structure,

thereby obviating a costly large-scale experiment to estimate complex covariance matrices. The same

model given in Equation Equation 2.1 is applied to model the power of a visual test.

To study various factors contributing to the power of both tests, the same logistic regression model is

fit on different subsets of the collated data grouped by levels of factors. These include the distribution

of the fitted values, type of the simulation model and the shape of the residual departures.

2.4 Experimental Design
Our experiment was conducted over three data collection periods to investigate the difference between

conventional hypothesis testing and visual inference in the application of linear regression diagnostics.

Two types of departures, non-linearity and heteroskedasticity, were collected during data collection

periods I and II. The data collection period III was designed primarily to measure human responses

to null lineups so that the visual p-values can be estimated. Additional lineups for both non-linearity

11

Advances in Artificial Intelligence for Data Visualization

Table 2.2: Levels of the factors used in data collection periods I, II, and III.

Non-linearity Heteroskedasticity Common

Poly Order (j) SD (σ) Shape (a) Ratio (b) Size (n) Distribution of the fitted values

2 0.25 -1 0.25 50 Uniform
3 1.00 0 1.00 100 Normal
6 2.00 1 4.00 300 Skewed

18 4.00 16.00 Discrete
64.00

and heteroskedasticity, using uniform fitted value distributions, were included for additional data,

and to avoid participant frustration of too many difficult tasks.

During the experiment, every participant recruited from the Prolific crowd-sourcing platform (Palan

and Schitter 2018) was presented with a block of 20 lineups. A lineup consisted of a randomly placed

data plot and 19 null plots, which were all residual plots drawn with raw residuals on the y-axis and

fitted values on the x-axis. An additional horizontal red line was added at y = 0 as a visual reference.

The data in the data plot was simulated from one of two models described in Section 2.4.1, while the

data of the remaining 19 null plots were generated by the residual rotation technique discussed in

Section Section 2.2.3.

In each lineup evaluation, the participant was asked to select one or more plots that are most different

from others, provide a reason for their selections, and evaluate how different they think the selected

plots are from others. If there is no noticeable difference between plots in a lineup, participants had

the option to select zero plots without the need to provide a reason. During the process of recording

the responses, a zero selection was considered to be equivalent to selecting all 20 plots. No participant

was shown the same lineup twice. Information about preferred pronouns, age group, education, and

previous experience in visual experiments were also collected. A participant’s submission was only

included in the analysis if the data plot is identified for at least one attention check.

Overall, we collected 7974 evaluations on 1152 unique lineups performed by 443 participants.

A summary of the factors used in the experiment can be found in Table 2.2. There were four

levels of the non-linear structure, and three levels of heteroskedastic structure. The signal strength

was controlled by error variance (σ) for the non-linear pattern, and by a ratio (b) parameter for

the heteroskedasticity. Additionally, three levels of sample size (n) and four different fitted value

distributions were incorporated.

12

Advances in Artificial Intelligence for Data Visualization

2.4.1 Simulating Departures from Good Residuals

2.4.1.1 Non-linearity and Heteroskedasticity

Data collection period I was designed to study the ability of participants to detect non-linearity

departures from residual plots. The non-linearity departure was constructed by omitting a jth order

Hermite polynomial (Hermite 1864; originally by Laplace 1820) term of the predictor from the simple

linear regression equation. Four different values of j = 2, 3, 6, 18 were chosen so that distinct shapes

of non-linearity were included in the residual plots. These include “U”, “S”, “M” and “triple-U” shape

as shown in Figure 2.3. A greater value of j will result in a curve with more turning points. It is

expected that the “U” shape will be the easiest to detect, and as the shape gets more complex it will be

harder to perceive in a scatterplot, particularly when there is noise. Figure 2.4 shows the “U” shape

for different amounts of noise (σ).

Data collection period II was similar to period I but focuses on heteroskedasticity departures. We

generated the heteroskedasticity departures by setting the variance-covariance matrix of the error term

as a function of the predictor, but fitted the data with the simple linear regression model, intentionally

violated the constant variance assumption. Visual patterns of heteroskedasticity are simulated using

three different shapes (a = -1, 0, 1) including “left-triangle”, “butterfly” and “right-triangle” shapes

as displayed in Figure 2.5. Figure 2.6 shows the butterfly shape as the ratio parameter (b) is changed.

More details about the simulation process are provided in Appendix A.2.

He2 : U He3 : S He6 : M He18 : triple−U

Figure 2.3: Polynomial forms generated for the residual plots used to assess detecting non-linearity. The
four shapes are generated by varying the order of polynomial given by j in He j(.).

2.4.1.2 Factors Common to both Data Collection Periods

Fitted values are a function of the independent variables (or predictors), and the distribution of the

observed values affects the distribution of the fitted values. Ideally, we would want the fitted values

to have a uniform coverage across the range of observed values or have a uniform distribution across

all of the predictors. This is not always present in the collected data. Sometimes the fitted values

are discrete because one or more predictors were measured discretely. It is also common to see a

skewed distribution of fitted values if one or more of the predictors has a skewed distribution. This

latter problem is usually corrected before modelling, using a variable transformation. Our simulation

13

Advances in Artificial Intelligence for Data Visualization

σ : 0.5 σ : 1 σ : 2 σ : 4

Figure 2.4: Examining the effect of σ on the signal strength in the non-linearity detection, for n= 300,
uniform fitted value distribution and the “U” shape. As σ increases the signal strength
decreases, to the point that the “U” is almost unrecognisable when σ = 4.

Left−triangle Butterfly Right−triangle

Figure 2.5: Heteroskedasticity forms used in the experiment. Three different shapes (a = −1,0,1)
are used in the experiment to create “left-triangle”, “butterfly” and “right-triangle” shapes,
respectively.

b: 0.25 b: 1 b: 4 b: 16 b: 64

Figure 2.6: Five different values of b are used in heteroskedasticity simulation to control the strength
of the signal. Larger values of b yield a bigger difference in variation, and thus stronger
heteroskedasticity signal.

assess this by using four different distributions to represent fitted values, constructed by different

sampling of the predictor, including U(−1, 1) (uniform), N(0, 0.32) (normal), lognormal(0, 0.62)/3

(skewed) and U{−1, 1} (discrete).

Figure 2.7 shows the non-linear pattern, a “U” shape, with the different fitted value distributions. We

would expect that structure in residual plots would be easier to perceive when the fitted values are

uniformly distributed.

14

Advances in Artificial Intelligence for Data Visualization

Three different sample sizes were used in our experiment: n= 50,100,300. Figure 2.8 shows the

non-linear “S” shape for different sample sizes. We expect signal strength to decline in the simulated

data plots with smaller n. We chose 300 as the upper limit, because it is typically enough for structure

to be visible in a scatterplot reliably. Beyond 300, the scatterplot should probably be used with

transparency or replaced with a density or binned plot as scatterplots suffer from over-plotting.

Uniform Normal Skewed Discrete

Figure 2.7: Variations in fitted values, that might affect perception of residual plots. Four different
distributions are used.

N: 50 N: 100 N: 300

Figure 2.8: Examining the effect of signal strength for the three different values of n used in the experi-
ment, for non-linear structure with fixed σ = 1.5, uniform fitted value distribution, and “S”
shape. For these factor levels, only when n= 300 is the “S” shape clearly visible.

2.4.2 Effect Size

The lineups are allocated to participants in a manner that uniformly covers the combination of

experimental factors in Table 2.2. In addition, we use effect size to measure the signal strength, which

helps in assigning a set of lineups with a range of difficulties to each participant.

Effect size in statistics measures the strength of the signal relative to the noise. It is surprisingly

difficult to quantify, even for simulated data as used in this experiment.

For the non-linearity model, the key items defining effect size are sample size (n) and the noise

level (σ2), and so effect size would be roughly calculated as
p

n/σ. Increasing sample size tends

to boost the effect size, while heightened noise diminishes it. However, it is not clear how the

additional parameter for the model polynomial order, j, should be incorporated. Intuitively, the

15

Advances in Artificial Intelligence for Data Visualization

large j means more complex pattern, which likely means effect size would decrease. Similarly, in the

heteroskedasticity model, effect size relies on sample size (n) and the ratio of the largest to smallest

variance, b. Larger values of both would produce higher effect size, but the role of the additional

shape parameter, a, in this context is unclear.

For the purposes of our calculations we have chosen to use an approach based on Kullback-Leibler

divergence (Kullback and Leibler 1951). This formulation defines effect size to be

E =
1
2

�

log
|diag(RVR′)|
|diag(Rσ2)|

− n+ tr(diag(RVR′)−1diag(Rσ2)) +µ′z(RVR′)−1µz

�

,

where diag(.) is the diagonal matrix constructed from the diagonal elements of a matrix, X is the

design matrix, V is the actual covariance matrix of the error term, R = In−X(X ′X)−1X ′ is the residual

operator, µz = RZβz is the expected values of residuals where Z contains any higher order terms

of X left out of the regression equation, βz contains the corresponding coefficients, and σ2In is the

assumed covariance matrix of the error term when H0 is true. More details about the effect size

derivation are provided in Appendix A.1.

2.5 Results
Data collection used a total of 1152 lineups, and resulted in a total of 7974 evaluations from 443

participants. Roughly half corresponded to the two models, non-linearity and heteroskedasticiy, and

the three collection periods had similar numbers of evaluations. Each participant received two of

the 24 attention check lineups which were used to filter results of participants who were clearly not

making an honest effort (only 11 of 454). To estimate α for calculating statistical significance (see

Appendix A.1) there were 720 evaluations of 36 null lineups. Neither the attention checks nor null

lineups were used in the subsequent analysis. The de-identified data, vi_survey, is made available

in the R package, visage.

The data was collected on lineups constructed from four different fitted value distributions that stem

from the corresponding predictor distribution: uniform, normal, skewed and discrete. Henceforth, we

refer to these four different fitted value distributions with respect to their predictor distribution. More

data was collected on the uniform distribution (each evaluated by 11 participants) than the others

(each evaluated by 5 participants). The analysis in Section 2.5.1–Section 2.5.4 uses only results from

lineups with uniform distribution, for a total 3069 lineup evaluations. This allows us to compare the

conventional and visual test performance in an optimal scenario. Section 2.5.5 examines how the

results may be affected if the fitted value distribution was different.

16

Advances in Artificial Intelligence for Data Visualization

2.5.1 Power Comparison of the Tests

Figure 2.9 present the power curves of various tests plotted against the effect size in the residuals for

non-linearity and heteroskedasticity. In each case the power of visual test is calculated for multiple

bootstrap samples leading to the many (solid orange) curves. The effect size was computed at a

5% significance level and plotted on a natural logarithmic scale. To facilitate visual calibration of

effect size values with the corresponding diagnostic plots, a sequence of example residual plots with

increasing effect sizes is provided at the bottom of these figures. These plots serve as a visual aid to

help readers understand how different effect size values translate to changes in the diagnostic plots.

The horizontal lines of dots at 0 and 1 represent the non-rejection or rejection decisions made by

visual tests for each lineup.

Figure 2.9A compares the power for the different tests for non-linear structure in the residuals. The

test with the uniformly higher power is the RESET test, one that specifically tests for non-linearity.

Note that the BP and SW tests have much lower power, which is expected because they are not

designed to detect non-linearity. The bootstrapped power curves for the visual test are effectively a

right shift from that of the RESET test. This means that the RESET test will reject at a lower effect size

(less structure) than the visual test, but otherwise the performance will be similar. In other words,

the RESET test is more sensitive than the visual test. This is not necessarily a good feature for the

purposes of diagnosing model defects: if we scan the residual plot examples at the bottom, we might

argue that the non-linearity is not sufficiently problematic until an effect size of around 3 or 3.5. The

RESET test would reject closer to an effect size of 2, but the visual test would reject closer to 3.25, for

a significance level of 0.05. The visual test matches the robustness of the model to (minor) violations

of assumptions much better.

For the heteroskedasticity pattern, the power of BP test, designed for detecting heteroskedasticity,

is uniformly higher than the other tests. The visual test power curve shifts to the right. This

shows a similar story to the power curves for non-linearity pattern: the conventional test is more

sensitive than the visual test. From the example residual plots at the bottom we might argue that

the heteroskedasticity becomes noticeably visible around an effect size of 3 or 3.5. However the

BP test would reject at around effect size 2.5. Interestingly, the power curve for the SW test (for

non-normality) is only slightly different to that of the visual test, suggesting that it performs reasonably

well for detecting heteroskedasticity, too. The power curve for the BP test suggests it is not useful for

detecting heteroskedasticity, as expected.

Overall, the results show that the conventional tests are more sensitive than the visual test. The

conventional tests do have higher power for the patterns they are designed to detect, but they typically

17

Advances in Artificial Intelligence for Data Visualization

Figure 2.9: Comparison of power between different tests for (A) non-linear and (B) heteroskedasticity
patterns (uniform fitted values only). Main plot shows the power curves, with dots indicating
non-reject and reject in visual testing of lineups. The multiple lines for the visual test arise
from estimating the power on many bootstrap samples. The row of scatterplots at the bottom
are examples of residual plots corresponding to the specific effect sizes marked by vertical
lines in the main plot.

18

Advances in Artificial Intelligence for Data Visualization

fail to detect other patterns unless those patterns are particularly strong. The visual test does not

require specifying the pattern ahead of time, relying purely on whether the observed residual plot is

detectably different from “good” residual plots. They will perform equally well regardless of the type

of model defect. This aligns with the advice of experts on residual analysis, who consider residual

plot analysis to be an indispensable tool for diagnosing model problems. What we gain from using a

visual test for this purpose is the removal of any subjective arguments about whether a pattern is

visible or not. The lineup protocol provides the calibration for detecting patterns: if the pattern in

the data plot cannot be distinguished from the patterns in good residual plots, then no discernible

problem with the model exists.

2.5.2 Comparison of Test Decisions Based on p-values

The power comparison demonstrates that the appropriate conventional tests will reject more aggres-

sively than visual tests, but we do not know how the decisions for each lineup would agree or disagree.

Here we compare the reject or fail to reject decisions of these tests, across all the lineups. Figure 2.10

shows the agreement of the conventional and visual tests using a mosaic plot for both non-linearity

patterns and heteroskedasticity patterns. For both patterns the lineups resulting in a rejection by the

visual test are all also rejected by the conventional test, except for one from the heteroskedasticity

model. This reflects exactly the story from the previous section, that the conventional tests reject

more aggressively than the visual test.

For non-linearity lineups, conventional tests and visual tests reject 69% and 32% of the time, respec-

tively. Of the lineups rejected by the conventional test, 46% are rejected by the visual test, that is,

approximately half as many as the conventional test. There are no lineups that are rejected by the

visual test but not by the conventional test.

In heteroskedasticity lineups, 76% are rejected by conventional tests, while 56% are rejected by visual

tests. Of the lineups rejected by the conventional test, the visual test rejects more than two-thirds of

them, too.

Surprisingly, the visual test rejects 1 of the 33 (3%) of lineups where the conventional test does not

reject. Figure 2.11 shows this lineup. The data plot in position seventeen displays a relatively strong

heteroskedasticity pattern, and has a strong effect size (loge(E) = 4.02), which is reflected by the

visual test p-value= 0.026. But the BP test p-value= 0.056, is slightly above the significance cutoff

of 0.05. This lineup was evaluated by 11 participants, it has experimental factors a = 0 (“butterfly”

shape), b = 64 (large variance ratio), n= 50 (small sample size), and a uniform distribution for the

predictor. It may have been the small sample size and the presence of a few outliers that may have

resulted in the lack of detection by the conventional test.

19

Advances in Artificial Intelligence for Data Visualization

Non−linearity Heteroskedasticity

Reject Not Reject Not

Reject

Not

Conventional tests

V
is

ua
l t

es
ts

Figure 2.10: Rejection rate (p-value ≤ 0.05) of visual test conditional on the conventional test decision
on non-linearity (left) and heteroskedasticity (right) lineups (uniform fitted values only)
displayed using a mosaic plot. The visual test rejects less frequently than the conventional
test, and (almost) only rejects when the conventional test does. Surprisingly, one lineup in
the heteroskedasticity group is rejected by the visual test but NOT the conventional test.

Because the power curve of the visual tests are a shift to the right of the conventional test (Figure 2.9)

we examined whether adjusting the significance level (to .001, .0001, .00001, . . .) of the conventional

test would generate similar decisions to that of the visual test. Interestingly, it does not: despite

resulting in less rejections, neither the RESET or BP tests come to complete agreement with the visual

test (see Appendix A.1).

2.5.3 Effect of Amount of Non-linearity

The order of the polynomial is a primary factor contributing to the pattern produced by the non-

linearity model. Figure 2.12 explores the relationship between polynomial order and power of the

tests. The conventional tests have higher power for lower orders of Hermite polynomials, and the

power drops substantially for the “triple-U” shape. To understand why this is, we return to the

application of the RESET test, which requires a parameter indicating degree of fitted values to test for,

and the recommendation is to generically use four (Ramsey 1969). However, the “triple-U” shape is

constructed from the Hermite polynomials using power up to 18. If the RESET test had been applied

using a higher power of no less than six, the power curve of “triple-U” shape will be closer to other

power curves. This illustrates the sensitivity of the conventional test to the parameter choice, and

highlights a limitation: it helps to know the data generating process to set the parameters for the

test, which is unrealistic in practice. However, we examined this in more detail (see Appendix A.1)

and found that there is no harm in setting the parameter higher than four on the tests’ operation for

20

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 2.11: The single heteroskedasticity lineup that is rejected by the visual test but not by the BP test.
The data plot (position 17) contains a “butterfly” shape. It visibly displays heteroskedasticity,
making it somewhat surprising that it is not detected by the BP test.

lower order polynomial shapes. Using a parameter value of six, instead of four, yields higher power

regardless of generating process, and is recommended.

For visual tests, we expect the “U” shape to be detected more readily, followed by the “S”, “M” and

“triple-U” shape. From Figure 2.12, it can be observed that the power curves mostly align with these

expectations, except for the “M” shape, which is as easily detected as the “S” shape. This suggests a

benefit of the visual test: knowing the shape ahead of time is not needed for its application.

21

Advances in Artificial Intelligence for Data Visualization

Conventional Visual

0 2 4 0 2 4

0.25

0.50

0.75

1.00

loge(Effect_size)

P
ow

er

Non−linearity shape U S M triple−U

Figure 2.12: The effect of the order of the polynomial on the power of conventional and visual tests.
Deeper colour indicates higher order. The default RESET tests under-performs significantly
in detecting the “triple-U” shape. To achieve a similar power as other shapes, a higher
order polynomial parameter needs to be used for the RESET test, but this higher than the
recommended value.

2.5.4 Effect of Shape of Heteroskedasticity

Figure 2.13 examines the impact of the shape of the heteroskedasticity on the power of of both tests.

The butterfly shape has higher power on both types of tests. The “left-triangle” and the “right-triangle”

shapes are functionally identical, and this is observed for the conventional test, where the power

curves are identical. Interestingly there is a difference for the visual test: the power curve of the

“left-triangle” shape is slightly higher than that of the “right-triangle” shape. This indicates a bias in

perceiving heteroskedasticity depending on the direction, and may be worth investigating further.

2.5.5 Effect of Fitted Value Distributions

In regression analysis, predictions are conditional on the observed values of the predictors, that is,

the conditional mean of the dependent variable Y given the value of the independent variable X ,

E(Y |X). This is an often forgotten element of regression analysis but it is important. Where X is

observed, the distribution of the X values in the sample, or consequently Ŷ , may affect the ability to

read any patterns in the residual plots. The effect of fitted value distribution on test performance is

assess using four different distributions of fitted values stemming from the predictor distributions:

uniform, normal, discrete and lognormal (skewed). We expect that if all predictors have a uniform

distribution, it is easier to read the relationship with the residuals.

Figure 2.14 examines the impact of the fitted value distribution on the power of conventional (left)

and visual (right) tests for both the non-linearity (top) and heteroskedasticity (bottom) patterns. For

22

Advances in Artificial Intelligence for Data Visualization

Conventional Visual

0 2 4 6 0 2 4 6

0.25

0.50

0.75

1.00

loge(Effect_size)

P
ow

er

Heteroskedasticity shape left−triangle butterfly right−triangle

Figure 2.13: The effect of heteroskedasticity shape (parameter a) on the power of conventional and
visual tests. The butterfly has higher power in both tests. Curiously, the visual test has a
slightly higher power for the “left-triangle” than the “right-triangle” shape, when it would
be expected that they should be similar, which is observed in conventional testing.

conventional tests, only the power curves of appropriate tests are shown: RESET tests for non-linearity

and BP tests for heteroskedasticity. For visual tests, more evaluations on lineups with uniform fitted

value distribution were collected, so to have a fair comparison, we randomly sample five from the

11 total evaluations to estimate the power curves, producing the multiple curves for the uniform

condition, and providing an indication of the variability in the power estimates.

Perhaps surprisingly, the visual tests have more consistent power across the different fitted value dis-

tributions: for the non-linear pattern, there is almost no power difference, and for the heteroskedastic

pattern, uniform and discrete have higher power than normal and skewed. The likely reason is that

these latter two have fewer observations in the tails where the heteroskedastic pattern needs to be

detected.

The variation in power in the conventional tests is at first sight, shocking. However, it is discussed,

albeit rarely, in the testing literature. See, for example, Jamshidian et al. (2007), Olvera Astivia et al.

(2019) and Zhang and Yuan (2018) which show derivations and use simulation to assess the effect of

the observed distribution of the predictors on test power. The big differences in the power curves

seen in Figure 2.14 is echoed in the results reported in these articles.

2.6 Limitations and Practicality
One of the primary limitations of the lineup protocol lies in its reliance on human judgements. In this

context, the effectiveness of a single lineup evaluation can be dependent on the perceptual ability

23

Advances in Artificial Intelligence for Data Visualization

Figure 2.14: Comparison of power on lineups with different fitted value distributions for conventional
and visual tests (columns) for non-linearity and heteroskedasticity patterns (rows). The
power curves of conventional tests for non-linearity and heteroskedasticity patterns are
produced by RESET tests and BP tests, respectively. Power curves of visual tests are estimated
using five evaluations on each lineup. For lineups with a uniform fitted value distribution,
the five evaluations are repeatedly sampled from the total eleven evaluations to give multiple
power curves (solid grey). Surprisingly, the fitted value distribution has produces more
variability in the power of conventional tests than visual tests. Uneven distributions, normal
and skewed distributions, tend to yield lower power.

and visual skills of the individual. However, when results from multiple individuals are combined the

outcome is encouragingly high-quality and robust. For simple plots and strong patterns just a few

individuals are needed to arrive at a clear answer, but more individuals will be needed when the plot

design is complex, or the signal strength is weak.

Using a lineup protocol removes subjectiveness in interpreting patterns in plots. A plot is compared

with draws from a null model, in much the same way as a test statistic is compared to its sampling

distribution. It is important to remove plot elements that might introduce bias, such as axis labels,

text and legends, or to make them generic.

The lineup protocol can be used cheaply and informally with the R package nullabor. There is

evidence that it is being used fairly broadly, based on software download rates and citations of the

24

Advances in Artificial Intelligence for Data Visualization

original papers. For residual plot analysis we recommend that the lineup be the default first plot

so that the data plot is only seen in the context of null plots. When a rigorous test is needed, we

recommend using a crowd-sourcing service, as done in gene expression experiment described in Yin

et al. (2013). While it takes extra effort it is not difficult today, and costs are tiny compared to the

overall costs of conducting a scientific experiment. We do also expect that at some point a computer

vision model can be developed to take over the task of employing people to evaluate residual plots.

For this study, simulated data was used to provide a precisely controlled environment within which to

compare results from conventional testing to those from visual testing. We also explored only the

most commonly used, the residual vs fitted value plots. However, we expect the behaviour of the

conventional test and the visual test to be similar when observed residuals are diagnosed with this

type of plot or other residual plots. The conventional tests will be more sensitive to small departures

from the null. They will also fail to detect departures when residuals have some contamination,

like outliers or anomalies, as is often encountered when working with data. The lineup approach is

well-suited for generally interpreting data plots, and also detecting unexpected patterns not related

to the model. This is supported by earlier research (e.g. Loy et al. 2016; Loy and Hofmann 2015;

Roy Chowdhury et al. 2015; VanderPlas and Hofmann 2016; Wickham et al. 2010).

2.7 Conclusions
This paper has described experimental evidence providing support for the advice of regression analysis

experts that residual plots are indispensable methods for assessing model fit, using the formal framework

of the lineup protocol. We conducted a perceptual experiment on scatterplots of residuals vs fitted

values, with two primary departures from good residuals: non-linearity and heteroskedasticity. We

found that conventional residual-based statistical tests are more sensitive to weak departures from

model assumptions than visual tests. That is, a conventional test concludes there are problems with

the model fit almost twice as often as a human. Conventional tests often reject the null hypothesis

when departures in the form of non-linearity and heteroskedasticity are not visibly different from

null residual plots.

While it might be argued that the conventional tests are correctly detecting small but real effects,

this can also be seen as the conventional tests are rejecting unnecessarily. Many of these rejections

happen even when downstream analysis and results would not be significantly affected by the small

departures from a good fit. The results from human evaluations provide a more practical solution,

which reinforces the statements from regression experts that residual plots are an indispensable

method for model diagnostics. Further work would be needed to quantify how much departure from

good residuals is too much.

25

Advances in Artificial Intelligence for Data Visualization

It is important to emphasize that this work also supports a change in common practice, which is to

deliver residual plots as a lineup, embedded in a field of null plots, rather than be viewed out of

context. A residual plot may contain many visual features, but some are caused by the characteristics

of the predictors and the randomness of the error, not by the violation of the model assumptions.

These irrelevant visual features have a chance to be filtered out by participants with a comparison to

null plots, resulting in more accurate reading. The lineup enables a careful calibration for reading

structure in residual plots, and also provides the potential to discover interesting and important

features in the data not directly connected to linear model assumptions.

Human evaluation of residuals is expensive, time-consuming and laborious. This is possibly why

residual plot analysis is often not done in practice. However, with the emergence of effective computer

vision, it is hoped this work helps to lay the foundation for automated residual plot assessment.

The experiment also revealed some interesting results. For the most part, the visual test performed

similarly to the appropriate conventional test with a shift in the power curve. Unlike conventional tests,

where one needs to specifically test for non-linearity or heteroskedasticity the visual test operated

effectively across the range of departures from good residuals. If the fitted value distribution is not

uniform, there is a small loss of power in the visual test. Surprisingly, there is a big difference in

power of the conventional test across fitted value distributions. Another unexpected finding was that

the direction of heteroskedasticity appears to affect the ability to visually detect it: both triangles

being more difficult to detect than the butterfly, and a small difference in detection between left- and

right-triangle.

26

Chapter 3

Automated Assessment of Residual Plots

with Computer Vision Models

Plotting the residuals is a recommended procedure to diagnose deviations from linear model as-

sumptions, such as non-linearity, heteroscedasticity, and non-normality. The presence of structure

in residual plots can be tested using the lineup protocol to do visual inference. There are a variety

of conventional residual tests, but the lineup protocol, used as a statistical test, performs better

for diagnostic purposes because it is less sensitive and applies more broadly to different types of

departures. However, the lineup protocol relies on human judgment which limits its scalability. This

work presents a solution by providing a computer vision model to automate the assessment of residual

plots. It is trained to predict a distance measure that quantifies the disparity between the residual

distribution of a fitted classical normal linear regression model and the reference distribution, based

on Kullback-Leibler divergence. From extensive simulation studies, the computer vision model exhibits

lower sensitivity than conventional tests but higher sensitivity than human visual tests. It is slightly

less effective on non-linearity patterns. Several examples from classical papers and contemporary

data illustrate the new procedures, highlighting its usefulness in automating the diagnostic process

and supplementing existing methods.

3.1 Introduction
Plotting residuals is commonly regarded as a standard practice in linear regression diagnostics (Belsley

et al. 1980; Cook and Weisberg 1982). This visual assessment plays a crucial role in identifying

whether model assumptions, such as linearity, homoscedasticity, and normality, are reasonable. It

also helps in understanding the goodness of fit and various unexpected characteristics of the model.

27

Advances in Artificial Intelligence for Data Visualization

Generating a residual plot in most statistical software is often as straightforward as executing a line

of code or clicking a button. However, accurately interpreting a residual plot can be challenging. A

residual plot can exhibit various visual features, but it is crucial to recognize that some may arise

from the characteristics of predictors and the natural stochastic variation of the observational unit,

rather than indicating a violation of model assumptions (Li et al. 2024). Consider Figure 3.1 as an

example, the residual plot displays a triangular left-pointing shape. The distinct difference in the

spread of the residuals across the fitted values may result in the analyst suggesting that there may be

heteroskedasticity, however, it is important to avoid over-interpreting this visual pattern. In this case,

the fitted regression model is correctly specified, and the triangular shape is actually a result of the

skewed distribution of the predictors, rather than indicating a flaw in the model.

The concept of visual inference, as proposed by Buja et al. (2009a), provides an inferential frame-

work to assess whether residual plots indeed contain visual patterns inconsistent with the model

assumptions. The fundamental idea involves testing whether the true residual plot visually differs

significantly from null plots, where null plots are plotted with residuals generated from the residual

rotation distribution (Langsrud 2005), which is a distribution consistent with the null hypothesis

H0 that the linear regression model is correctly specified. Typically, the visual test is accomplished

through the lineup protocol, where the true residual plot is embedded within a lineup alongside

several null plots. If the true residual plot can be distinguished from the lineup, it provides evidence

for rejecting H0.

The practice of delivering a residual plot as a lineup is generally regarded as a valuable approach.

Beyond its application in residual diagnostics, the lineup protocol has been integrated into the

analysis of diverse subjects. For instance, Loy and Hofmann (2013, 2014, 2015) illustrated its

applicability in diagnosing hierarchical linear models. Additionally, Widen et al. (2016) and Fieberg

et al. (2024) demonstrated its utility in geographical and ecology research respectively, while Krishnan

and Hofmann (2021) explored its effectiveness in forensic examinations.

A practical limitation of the lineup protocol lies in its reliance on human judgements (see Li et al.

2024 about the practical limitations). Unlike conventional statistical tests that can be performed

computationally in statistical software, the lineup protocol requires human evaluation of images. This

characteristic makes it less suitable for large-scale applications, given the associated high labour costs

and time requirements. There is a substantial need to develop an approach to substitute these human

judgement with an automated reading of data plots using machines.

The utilization of computers to interpret data plots has a rich history, with early efforts such as

“Scagnostics” by Tukey and Tukey (1985), a set of numerical statistics that summarize features of

28

Advances in Artificial Intelligence for Data Visualization

scatter plots. Wilkinson et al. (2005) expanded on this work, introducing scagnostics based on

computable measures applied to planar proximity graphs. These measures, including, but not limited

to, “Outlying”, “Skinny”, “Stringy”, “Straight”, “Monotonic”, “Skewed”, “Clumpy”, and “Striated”,

aimed to characterize outliers, shape, density, trend, coherence and other characteristics of the data.

While this approach has been inspiring, there is a recognition (Buja et al. 2009a) that it may not

capture all the necessary visual features that differentiate true residual plots from null plots. A more

promising alternative entails enabling machines to learn the function for extracting visual features

from residual plots. Essentially, this means empowering computers to discern the crucial visual

features for residual diagnostics and determining the method to extract them.

Modern computer vision models are well-suited for addressing this challenge. They rely on deep

neural networks with convolutional layers (Fukushima and Miyake 1982). These layers use small,

sliding windows to scan the image, performing a dot product to extract local features and patterns.

Numerous studies have demonstrated the efficacy of convolutional layers in addressing various vision

tasks, including image recognition (Rawat and Wang 2017). Despite the widespread use of computer

vision models in fields like computer-aided diagnosis (Lee and Chen 2015), pedestrian detection

(Brunetti et al. 2018), and facial recognition (Emami and Suciu 2012), their application in reading

data plots remains limited. While some studies have explored the use of computer vision models

for tasks such as reading recurrence plots for time series regression (Ojeda et al. 2020), time series

classification (Chu et al. 2019; Hailesilassie 2019; Hatami et al. 2018b; Zhang et al. 2020), anomaly

detection (Chen et al. 2020), and pairwise causality analysis (Singh et al. 2017), the application of

reading residual plots with computer vision models is a new field of study.

In this chapter, we develop computer vision models and integrate them into the residual plots

diagnostics workflow, addressing the need for an automated visual inference. The chapter is structured

as follows. Section 3.2 discusses various specifications of the computer vision models. Section 3.3

defines the distance measure used to detect model violations, while Section 3.4 explains how the

computer vision models estimate this distance measure. Section 3.5 covers the statistical tests based

on the estimated distance, and Section 3.6 introduces a Model Violations Index, which offers a quicker

and more convenient assessment. Sections 3.7, 3.8, and 3.9 detail the data preparation, model

architecture, and training process, respectively. The results are presented in Section 3.10. Example

dataset applications are discussed in Section 3.11. Finally, we conclude with a discussion of our

findings and propose ideas for future research directions.

29

Advances in Artificial Intelligence for Data Visualization

−3

−2

−1

0

1

2

−12 −8 −4 0
Fitted values

R
es

id
ua

ls

Figure 3.1: An example residual vs fitted values plot (red line indicates 0 corresponds to the x-intercept,
i.e. y = 0). The vertical spread of the data points varies with the fitted values. This
often indicates the existence of heteroskedasticity, however, here the result is due to skewed
distribution of the predictors rather than heteroskedasticity. The Breusch-Pagan test rejects
this residual plot at 95% significance level (p-value= 0.046).

3.2 Model Specifications
There are various specifications of the computer vision model that can be used to assess residual plots.

We discuss these specifications below focusing on two key components of the model formula: the

input and the output format.

3.2.1 Input Formats

Deep learning models are in general very sensitive to the input data. The quality and relevance of the

input data greatly influence the model’s capacity to generate insightful and meaningful results. There

are several designs of the input format that can be considered.

A straightforward architecture of the input layer involves feeding a vector of residuals along with a

vector of fitted values, essentially providing all the necessary information for creating a residuals vs

fitted values plot. However, a drawback of this method is the dynamic input size, which changes based

on the number of observations. For modern computer vision models implemented in mainstream

software like TensorFlow (Abadi et al. 2016), the input shape is typically fixed. One solution is to

pad the input vectors with leading or trailing zeros when the input tensor expects longer vectors, but

it may fail if the input vector surpasses the designed length.

Another strategy is to summarize the residuals and fitted values separately using histograms and

utilize the counts as the input. By controlling the number of bins in the histograms, it becomes

30

Advances in Artificial Intelligence for Data Visualization

possible to provide fixed-length input vectors. Still, since histograms only capture the marginal

distribution of residuals and fitted values respectively, they can not be used to differentiate visual

patterns with same marginal distributions but different joint distributions.

Another architecture of the input layer involves using an image as input. The primary advantage

of this design, as opposed to the vector format, is the availability of the existing and sophisticated

image processing architectures developed over the years, such as the VGG16 architecture proposed in

Simonyan and Zisserman (2014). These architectures can effectively capture and summarize spatial

information from nearby pixels, which is less straightforward with vector input. While encoding data

points as pixels might lead to some loss of detail, this approach still provides a more comprehensive

representation than the histogram-based strategy because it captures the joint distribution of fitted

values and residuals. The main considerations are the image resolution and the aesthetics of the

residual plot. In general, a higher resolution provides more information to the model but comes

with a trade-off of increased complexity and greater difficulty in training. As for the aesthetics of

the residual plot, a practical solution is to consistently present residual plots in the same style to the

model. This implies that the model can not accept arbitrary images as input but requires the use

of the same pre-processing pipeline to convert residuals and fitted values into a standardized-style

residual plot.

Providing multiple residual plots to the model, such as a pair of plots, a triplet or a lineup is also

a possible option. Chopra et al. (2005) have shown that computer vision models designed for

image comparison can assess whether a pair of images are similar or dissimilar. Applied to our

specific problem, we can define null plots of a fitted regression model to be similar to each other,

while considering true residual plots to be distinct from null plots of any fitted regression model. A

triplet constitutes a set of three images, denoted as image1, image2 and image3. It is often used

to predict whether image2 or image3 is more similar to image1, proving particularly useful for

establishing rankings between samples. For this setup, we can apply the same criteria to define

similarity between images. However, it is important to note that these two approaches usually require

additional considerations regarding the loss function and, at times, non-standard training processes

due to shared weights between different convolutional blocks.

Presenting a lineup to a model aligns closely with the lineup protocol. However, as the number of

residual plots in a lineup increases, the resolution of the input image grows rapidly, posing challenges

in training the model. We experimented with this approach in a pilot study, but the performance of

the trained model was sub-optimal.

Taking into account the implementation cost and the need for model interpretability, we used the

31

Advances in Artificial Intelligence for Data Visualization

single residual plot input format in this chapter.

3.2.2 Output Formats

Given that the input is a single residual plot represented as a fixed-resolution image, we can choose

the output from the computer vision model to be either binary (classification) or numeric (regression).

The binary outcome can represent whether the input image is consistent with a null plot as determined

by either (1) the data generating process or (2) the result of a visual test based on human judgement.

Training a model following the latter option requires data from prior human subject experiments,

presenting difficulties in controlling the quality of data due to variations in experimental settings

across different studies. Additionally, some visual inference experiments are unrelated to linear

regression models or residual plot diagnostics, resulting in a limited amount of available training

data.

Alternatively, the output could be a meaningful and interpretable numerical measure useful for

assessing residual plots, such as the strength of suspicious visual patterns reflecting the extent of

model violations, or the difficulty index for identifying whether a residual plot has no issues. However,

these numeric measures are often informally used in daily communication but are not typically

formalized or rigorously defined. For the purpose of training a model, this numeric measure has to

be quantifiable.

In this study, we chose to define and use a distance between a true residual plot and a theoretically

“good” residual plot. This is further explained in Section 3.3. Vo and Hays (2016) have also demon-

strated that defining a proper distance between images can enhance the matching accuracy in image

search compared to a binary outcome model.

3.2.3 Auxiliary Information with Scagnostics

In Section 3.1, we mention that scagnostics consist of a set of manually designed visual feature

extraction functions. While our computer vision model will learn its own feature extraction function

during training, leveraging additional information from scagnostics can enhance the model’s predictive

accuracy.

For each residual plot used as an input image, we calculated four scagnostics — “Monotonic”, “Sparse”,

“Splines”, and “Striped” – using the cassowaryr R package (Mason et al. 2022). These computed

measures, along with the number of observations from the fitted model, were provided as the second

input for the computer vision model. We selected these scagnostics due to their reliability and

efficiency, as other scagnostics occasionally caused R process crashes (approximately 5% of the time)

during training data preparation, due to a bug in the interp R package (Gebhardt et al. 2023).

32

Advances in Artificial Intelligence for Data Visualization

Although the package maintainer later fixed this bug at our request, the fix came too late to retrain

the model, and additionally, their high computational costs make them unsuitable for rapid inference,

which was a critical factor in our choice.

3.3 Distance from a Theoretically “Good” Residual Plot
To develop a computer vision model for assessing residual plots within the visual inference framework,

it is important to precisely define a numerical measure of “difference” or “distance” between plots.

This distance can take the form of a basic statistical operation on pixels, such as the sum of square

differences, however, a pixel-to-pixel comparison makes little sense in comparing residual plots where

the main interest would be structural patterns. Alternatively, it could involve established image

similarity metrics like the Structural Similarity Index Measure (Wang et al. 2004) which compares

images by integrating three perception features of an image: contrast, luminance, and structure

(related to average, standard deviation and correlation of pixel values over a window, respectively).

These image similarity metrics are tailored for image comparison in vastly different tasks to evaluating

data plots, where only essential plot elements require assessment (Chowdhury et al. 2018). We can

alternatively define a notion of distance by integrating key plot elements (instead of key perception

features like luminance, contrast, and structure), such as those captured by scagnostics mentioned in

Section 3.1, but the functional form still needs to be carefully refined to accurately reflect the extent

of the violations.

In this section, we introduce a distance measure between a true residual plot and a theoretically ‘good’

residual plot. This measure quantifies the divergence between the residual distribution of a given

fitted regression model and that of a correctly specified model. The computation assumes knowledge

of the data generating processes for predictors and response variables. Since these processes are

often unknown in practice, we will discuss a method to estimate this distance using a computer vision

model in Section 3.4.

3.3.1 Residual Distribution

For a classical normal linear regression model, y = Xβ+e, the residual ê are derived as the difference

of the fitted values and observed values y . Suppose the data generating process is known and the

regression model is correctly specified, by the Frisch-Waugh-Lowell theorem (Frisch and Waugh 1933),

residuals ê can also be treated as random variables and written as a linear transformation of the error

e formulated as ê = Re, where R = In − X(X⊤X)−1X⊤ is the residual operator, In is a n by n identity

matrix, and n is the number of observations.

One of the assumptions of the classical normal linear regression model is that the error e follows

33

Advances in Artificial Intelligence for Data Visualization

a multivariate normal distribution with zero mean and constant variance, i.e., e ∼ N(0n,σ2In). It

follows that the distribution of residuals ê can be characterized by a certain probability distribution,

denoted as Q, which is transformed from the multivariate normal distribution. This reference

distribution Q summarizes what “good” residuals should follow given the design matrix X is known

and fixed.

Suppose the design matrix X has linearly independent columns, the trace of the hat matrix H =

X(X⊤X)−1X⊤ will equal to the number of columns in X denoted as k. As a result, the rank of R is n−k,

and Q is a degenerate multivariate distribution. To capture the characteristics of Q, such as moments,

we can simulate a large numbers of ϵ and transform it to e to get the empirical estimates. For simplicity,

in this study, we replaced the variance-covariance matrix of residuals cov(e, e) = Rσ2R⊤ = Rσ2 with

a full-rank diagonal matrix diag(Rσ2), where diag(.) sets the non-diagonal entries of a matrix to

zeros. The resulting distribution for Q is N(0n, diag(Rσ2)).

Distribution Q is derived from the correctly specified model. However, if the model is misspecified,

then the actual distribution of residuals denoted as P, will be different from Q. For example, if the data

generating process contains variables correlated with any column of X but missing from X , causing an

omitted variable problem, P will be different from Q because the residual operator obtained from the

fitted regression model will not be the same as R. Besides, if the ϵ follows a non-normal distribution

such as a multivariate lognormal distribution, P will usually be skewed and has a long tail.

3.3.2 Distance of P from Q

Defining a proper distance between distributions is usually easier than defining a proper distance

between data plots. Given the true residual distribution Q and the reference residual distribution P,

we used a distance measure based on Kullback-Leibler divergence (Kullback and Leibler 1951) to

quantify the difference between two distributions as

D = log (1+ DK L) , (3.1)

where DK L is defined as

DK L =

∫

Rn

log
p(e)
q(e)

p(e)de, (3.2)

and p(.) and q(.) are the probability density functions for distribution P and distribution Q, respectively.

This distance measure was first proposed in Li et al. (2024). It was mainly designed for measuring

the effect size of non-linearity and heteroskedasticity in a residual plot. Li et al. (2024) have derived

34

Advances in Artificial Intelligence for Data Visualization

that, for a classical normal linear regression model that omits necessary higher-order predictors

Z and the corresponding parameter βz, and incorrectly assumes ϵ ∼ N(0n,σ2In) while in fact

ϵ ∼ N(0n, V) where V is an arbitrary symmetric positive semi-definite matrix, Q can be represented as

N(RZβz , diag(RVR)). Note that the variance-covariance matrix is replaced with the diagonal matrix

to ensure it is a full-rank matrix.

Since both P and Q are adjusted to be multivariate normal distributions, Equation 3.2 can be further

expanded to

DK L =
1
2

�

log
|W |

|diag(Rσ2)|
− n+ tr(W−1diag(Rσ2)) +µ⊤z W−1µz

�

, (3.3)

where µz = RZβz , and W = diag(RVR). The assumed error variance σ2 is set to be tr(V)/n, which

is the expectation of the estimated variance.

3.3.3 Non-normal P

For non-normal error ϵ, the true residual distribution P is unlikely to be a multivariate normal

distribution. Thus, Equation 3.3 given in Li et al. (2024) will not be applicable to models violating

the normality assumption.

To evaluate the Kullback-Leibler divergence of non-normal P from Q, the fallback is to solve Equa-

tion 3.2 numerically. However, since e is a linear transformation of non-normal random variables, it

is very common that the general form of P is unknown, meaning that we can not easily compute p(e)

using a well-known probability density function. Additionally, even if p(e) can be calculated for any

e ∈ Rn, it will be very difficult to do numerical integration over the n-dimensional space, because n

could be potentially very large.

In order to approximate DK L in a practically computable manner, the elements of e are assumed to

be independent of each other. This assumption solves both of the issues mentioned above. First,

we no longer need to integrate over n random variables. The result of Equation 3.2 is now the sum

of the Kullback-Leibler divergence evaluated for each individual residual due to the assumption of

independence between observations. Second, it is not required to know the joint probability density

p(e) any more. Instead, the evaluation of Kullback-Leibler divergence for an individual residual relies

on the knowledge of the marginal density pi(ei), where ei is the i-th residual for i = 1, ..., n. This is

much easier to approximate through simulation. It is also worth mentioning that this independence

assumption generally will not hold if cov(ei , e j) ̸= 0 for any 1≤ i < j ≤ n, but its existence is essential

for reducing the computational cost.

Given X and β , the algorithm for approximating Equation 3.2 starts from simulating m sets of

35

Advances in Artificial Intelligence for Data Visualization

observed values y according to the data generating process. The observed values are stored in a

matrix A with n rows and m columns, where each column of A is a set of observed values. Then, we

can get m sets of realized values of e stored in the matrix B by applying the residual operator B = RA.

Furthermore, kernel density estimation (KDE) with Gaussian kernel and optimal bandwidth selected

by the Silverman’s rule of thumb (Silverman 2018) is applied on each row of B to estimate pi(ei) for

i = 1, ..., n. The KDE computation can be done by the density function in R.

Since the Kullback-Leibler divergence can be viewed as the expectation of the log-likelihood ratio

between distribution P and distribution Q evaluated on distribution P, we can reuse the simulated

residuals in matrix B to estimate the expectation by the sample mean. With the independence

assumption, for non-normal P, DK L can be approximated by

DK L ≈
n
∑

i=1

D̂(i)K L ,

D̂(i)K L =
1
m

m
∑

j=1

log
p̂i(Bi j)

q(Bi j)
,

(3.4)

where D̂(i)K L is the estimator of the Kullback-Leibler divergence for an individual residual ei, Bi j is

the i-th row and j-th column entry of the matrix B, p̂i(.) is the kernel density estimator of pi(.),

q(.) is the normal density function with mean zero and an assumed variance estimated as σ̂2 =
∑

b∈vec(B)(b −
∑

b∈vec(B) b/nm)2/(nm − 1), and vec(.) is the vectorization operator which turns a

n×m matrix into a nm× 1 column vector by stacking the columns of the matrix on top of each other.

3.4 Distance Estimation
In the previous sections, we have defined a distance measure given in Equation 3.1 for quantifying the

difference between the true residual distribution P and an ideal reference distribution Q. However,

this distance measure can only be computed when the data generating process is known. In reality,

we often have no knowledge about the data generating process, otherwise we do not need to do a

residual diagnostic in the first place.

We use a computer vision model to estimate this distance measure for a residual plot. Let D be the

result of Equation 3.1, and our estimator D̂ is formulated as

D̂ = fCV (Vh×w(e, ŷ)), (3.5)

where Vh×w(.) is a plotting function that saves a residuals vs fitted values plot with fixed aesthetic as

36

Advances in Artificial Intelligence for Data Visualization

an image with h×w pixels in three channels (RGB), fCV (.) is a computer vision model which takes

an h×w image as input and predicts the distance in the domain [0,+∞).

With the estimated distance D̂, we can compare the underlying distribution of the residuals to a

theoretically “good” residual distribution. D̂ can also be used as an index of the model violations

indicating the strength of the visual signal embedded in the residual plot.

It is not expected that D̂ will be equal to original distance D. This is largely because information

contained in a single residual plot is limited and it may not be able to summarize all the important

characteristics of the residual distribution. For a given residual distribution P, many different residual

plots can be simulated, where many will share similar visual patterns, but some of them could be

visually very different from the rest, especially for regression models with small n. This suggests the

error of the estimation will vary depends on whether the input residual plot is representative or not.

3.5 Statistical Testing

3.5.1 Lineup Evaluation

Theoretically, the distance D for a correctly specified model is 0, because P will be the same as Q.

However, the computer vision model may not necessary predict 0 for a null plot. Using Figure 3.1

as an example, it contains a visual pattern which is an indication of heteroskedasticity. We would

not expect the model to be able to magically tell if the suspicious pattern is caused by the skewed

distribution of the fitted values or the existence of heteroskedasticity. Additionally, some null plots

could have outliers or strong visual patterns due to randomness, and a reasonable model will try to

summarize those information into the prediction, resulting in D̂ > 0.

This property is not an issue if D̂≫ 0 for which the visual signal of the residual plot is very strong,

and we usually do not need any further examination of the significance of the result. However, if

the visual pattern is weak or moderate, having D̂ will not be sufficient to determine if H0 should be

rejected.

To address this issue we can adhere to the paradigm of visual inference, by comparing the estimated

distance D̂ to the estimated distances for the null plots in a lineup. Specifically, if a lineup comprises

20 plots, the null hypothesis H0 will be rejected if D̂ exceeds the maximum estimated distance among

the m− 1 null plots, denoted as max
1≤i≤m−1

D̂(i)null , where D̂(i)null represents the estimated distance for the

i-th null plot. This approach is equivalent to the typical lineup protocol requiring a 95% significance

level, where H0 is rejected if the data plot is identified as the most distinct plot by the sole observer.

The estimated distance serves as a metric to quantify the difference between the data plot and the

null plots, as intended.

37

Advances in Artificial Intelligence for Data Visualization

Moreover, if the number of plots in a lineup, denoted by m, is sufficiently large, the empirical

distribution of D̂(i)null can be viewed as an approximation of the null distribution of the estimated

distance. Consequently, quantiles of the null distribution can be estimated using the sample quantiles,

and these quantiles can be utilized for decision-making purposes. The details of the sample quantile

computation can be found in Hyndman and Fan (1996). For instance, if D̂ is greater than or equal

to the 95% sample quantile, denoted as Qnull(0.95), we can conclude that the estimated distance

for the true residual plot is significantly different from the estimated distance for null plots with a

95% significance level. Based on our experience, to obtain a stable estimate of the 95% quantile,

the number of null plots, nnull , typically needs to be at least 100. However, if the null distribution

exhibits a long tail, a larger number of null plots may be required. Alternatively, a p-value is the

probability of observing a distance equally or greater than D̂ under the null hypothesis H0, and it can

be estimated by 1
m +

1
m

∑m−1
i=1 I
�

D̂(i)null ≥ D̂
�

.

To alleviate computation burden, a lattice of quantiles for D̂ under H0 with specified sample sizes can

be precomputed. We can then map the D̂ and sample size to the closet quantile and sample size in

lattice to calculate the corresponding p-value. This approach lose precision in p-value calculation,

however, significantly improves computational efficiency.

3.5.2 Bootstrapping

Bootstrap is often employed in linear regression when conducting inference for estimated parameters

Efron and Tibshirani (1994). It is typically done by sampling individual cases with replacement

and refitting the regression model. If the observed data accurately reflects the true distribution of

the population, the bootstrapped estimates can be used to measure the variability of the parameter

estimate without making strong distributional assumptions about the data generating process.

Similarly, bootstrap can be applied on the estimated distance D̂. For each refitted model M (i)boot , there

will be an associated residual plot V (i)boot which can be fed into the computer vision model to obtain

D̂(i)boot , where i = 1, ..., nboot , and nboot is the number of bootstrapped samples. If we are interested in

the variation of D̂, we can use D̂(i)boot to estimate a confidence interval.

Alternatively, since each M (i)boot has a set of estimated coefficients β̂ (i)boot and an estimated variance

σ̂2
(i)
boot , a new approximated null distribution can be construed and the corresponding 95% sample

quantile Q(i)boot(0.95) can be computed. Then, if D̂(i)boot ≥Q(i)boot(0.95), H0 will be rejected for M (i)boot .

The ratio of rejected M (i)boot among all the refitted models provides an indication of how often the

assumed regression model are considered to be incorrect if the data can be obtained repetitively from

the same data generating process. But this approach is computationally very expensive because it

requires nboot ×nnull times of residual plot assessment. In practice, Qnull(0.95) can be used to replace

38

Advances in Artificial Intelligence for Data Visualization

Q(i)boot(0.95) in the computation.

3.6 Model Violations Index
While statistical testing is a powerful tool for detecting model violations, it can become cumbersome

and time-consuming when quick decisions are needed, particularly due to the need to evaluate

numerous null plots. In practice, a more convenient and immediate method for assessing model

performance is often required. This is where an index, such as the Model Violations Index (MVI),

becomes valuable. It offers a straightforward way to quantify deviations from model assumptions,

enabling rapid assessment and easier comparison across models.

The estimator D̂ measures the difference between the true residual distribution and the reference

residual distribution, a difference primarily arises from deviations in model assumptions. The

magnitude of D directly reflects the degree of these deviations, thus making D̂ instrumental in

forming a model violations index (MVI).

Note that if more observations are used for estimating the linear regression, the result of Equation 3.2

will increase, as the integration will be performed with larger n. For a given data generating process,

D typically increases logarithmically with the number of observations. This behavior comes from the

relationship D = log(1+ DK L), where DK L =
∑n

i=1 D(i)K L under the assumption of independence.

Since D̂ is an estimate of D, it is expected that a larger number of observations will also lead to

a higher D̂. However, this does not imply that D̂ fails to accurately represent the extent of model

violations. In fact, when examining residual plots with more observations, we often observe a stronger

visual signal strength, as the underlying patterns are more likely to be revealed, except in cases of

significant overlapping.

Therefore, the Model Violations Index (MVI) can be proposed as

MVI= C + D̂− log(n), (3.6)

where C is a large enough constant keeping the result positive and the term − log(n) is used to offset

the increase in D due to sample size.

Figure 3.2 displays the residual plots for fitted models exhibiting varying degrees of non-linearity

and heteroskedasticity. Each residual plot’s MVI is computed using Equation 3.6 with C = 10. When

MVI > 8, the visual patterns are notably strong and easily discernible by humans. In the range

6 < MVI < 8, the visibility of the visual pattern diminishes as MVI decreases. Conversely, when

39

Advances in Artificial Intelligence for Data Visualization

Table 3.1: Degree of model violations or the strength of the visual signals according to the Model
Violations Index (MVI). The constant C is set to be 10.

Degree of model violations Range (C = 10)

Strong MVI> 8
Moderate 6<MVI< 8
Weak MVI< 6

MVI < 6, the visual pattern tends to become relatively faint and challenging to observe. Table 3.1

provides a summary of the MVI usage and it is applicable to other linear regression models.

3.7 Data Generation

3.7.1 Simulation Scheme

While observational data is frequently employed in training models for real-world applications, the

data generating process of observational data often remains unknown, making computation for our

target variable D unattainable. Consequently, the computer vision models developed in this study

were trained using synthetic data, including 80,000 training images and 8,000 test images. This

approach provided us with precise label annotations. Additionally, it ensured a large and diverse

training dataset, as we had control over the data generating process, and the simulation of the training

data was relatively cost-effective.

We have incorporated three types of residual departures of linear regression model in the training

data, including non-linearity, heteroskedasticity and non-normality. All three departures can be

summarized by the data generating process formulated as

y = 1n + x1 + β1x2 + β2(z + β1w) + k ⊙ ϵ,

z = He j(g(x1, 2)),

w = He j(g(x2, 2)),

k =
�

1n + b(2− |a|)(x1 + β1x2 − a1n)
◦2�◦1/2 ,

(3.7)

where y , x1, x2, z, w , k and ϵ are vectors of size n, 1n is a vector of ones of size n, x1 and x2 are two

independent predictors, He j(.) is the jth-order probabilist’s Hermite polynomials (Hermite 1864),

(.)◦2 and (.)◦1/2 are Hadamard square and square root, ⊙ is the Hadamard product, and g(x , k) is a

scaling function to enforce the support of the random vector to be [−k, k]n defined as

g(x , k) = 2k ·
x − xmin1n

xmax − xmin
− k1n, f or k > 0,

40

Advances in Artificial Intelligence for Data Visualization

MVI = 6.67 MVI = 5.83 MVI = 5.12 MVI = 4.79 MVI = 4.74

MVI = 8.37 MVI = 8.13 MVI = 7.8 MVI = 7.57 MVI = 7.09

MVI = 9.05 MVI = 8.91 MVI = 8.76 MVI = 8.65 MVI = 8.53

MVI = 9.59 MVI = 9.51 MVI = 9.41 MVI = 9.3 MVI = 9.18
(A) Non−linearity

MVI = 6.67 MVI = 5.83 MVI = 5.12 MVI = 4.79 MVI = 4.74

MVI = 8.37 MVI = 8.13 MVI = 7.8 MVI = 7.57 MVI = 7.09

MVI = 9.05 MVI = 8.91 MVI = 8.76 MVI = 8.65 MVI = 8.53

MVI = 9.59 MVI = 9.51 MVI = 9.41 MVI = 9.3 MVI = 9.18
(B) Heteroskedasticity

Figure 3.2: Residual plots generated from fitted models exhibiting varying degrees of (A) non-linearity
and (B) heteroskedasticity violations. The model violations index (MVI) is displayed atop
each residual plot. The non-linearity patterns are relatively strong for MV I > 8, and
relatively weak for MV I < 6, while the heteroskedasticity patterns are relatively strong for
MV I > 8, and relatively weak for MV I < 6.

where xmin = min
i∈{1,...,n}

x i , xmax = max
i∈{1,...,n}

x i and x i is the i-th entry of x .

41

Advances in Artificial Intelligence for Data Visualization

Table 3.2: Factors used in the data generating process for synthetic data simulation. Factor j and a
controls the non-linearity shape and the heteroskedasticity shape respectively. Factor b, σϵ
and n control the signal strength. Factor distϵ, distx1 and distx2 specifies the distribution of
ϵ, X1 and X2 respectively.

Factor Domain

j {2, 3, ..., 18}
a [-1, 1]
b [0, 100]
β1 {0, 1}
β2 {0, 1}

distϵ {discrete, uniform, normal, lognormal}
distx1 {discrete, uniform, normal, lognormal}
distx2 {discrete, uniform, normal, lognormal}
σϵ [0.0625, 9]
σX1 [0.3, 0.6]

σX2 [0.3, 0.6]
n [50, 500]

The residuals and fitted values of the fitted model were obtained by regressing y on x1. If β1 ̸= 0,

x2 was also included in the design matrix. This data generation process was adapted from Li et al.

(2024), where it was utilized to simulate residual plots exhibiting non-linearity and heteroskedasticity

visual patterns for human subject experiments. A summary of the factors utilized in Equation 3.7 is

provided in Table 3.2.

In Equation 3.7, z and w represent higher-order terms of x1 and x2, respectively. If β2 ̸= 0, the

regression model will encounter non-linearity issues. Parameter j serves as a shape parameter that

controls the number of tuning points in the non-linear pattern. Typically, higher values of j lead to an

increase in the number of tuning points, as illustrated in Figure 3.3.

Additionally, scaling factor k directly affects the error distribution and it is correlated with x1 and

x2. If b ̸= 0 and ϵ ∼ N(0n,σ2In), the constant variance assumption will be violated. Parameter a is

a shape parameter controlling the location of the smallest variance in a residual plot as shown in

Figure 3.4.

Non-normality violations arise from specifying a non-normal distribution for ϵ. In the synthetic data

simulation, four distinct error distributions are considered, including discrete, uniform, normal, and

lognormal distributions, as presented in Figure 3.5. Each distribution imparts unique characteristics

in the residual plot. The discrete error distribution introduces discrete clusters in residuals, while the

lognormal distribution typically yields outliers. Uniform error distribution may result in residuals

filling the entire space of the residual plot. All of these distributions exhibit visual distinctions from

42

Advances in Artificial Intelligence for Data Visualization

17 18

12 13 14 15 16

7 8 9 10 11

2 3 4 5 6

Figure 3.3: Non-linearity forms generated for the synthetic data simulation. The 17 shapes are generated
by varying the order of polynomial given by j in He j(.).

the normal error distribution.

Equation 3.7 accommodates the incorporation of the second predictor x2. Introducing it into the

data generation process by setting β1 = 1 significantly enhances the complexity of the shapes, as

illustrated in Figure 3.6. In comparison to Figure 3.3, Figure 3.6 demonstrates that the non-linear

shape resembles a surface rather than a single curve. This augmentation can facilitate the computer

vision model in learning visual patterns from residual plots of the multiple linear regression model.

In real-world analysis, it is not uncommon to encounter instances where multiple model violations

coexist. In such cases, the residual plots often exhibit a mixed pattern of visual anomalies corre-

sponding to different types of model violations. Figure 3.7 and Figure 3.8 show the visual patterns of

models with multiple model violations.

3.7.2 Balanced Dataset

To train a robust computer vision model, we deliberately controlled the distribution of the target

variable D in the training data. We ensured that it followed a uniform distribution between 0 and

7. This was achieved by organizing 50 buckets, each exclusively accepting training samples with

D falling within the range [7(i − 1)/49,7i/49) for i < 50, where i represents the index of the i-th

bucket. For the 50-th bucket, any training samples with D ≥ 7 were accepted.

43

Advances in Artificial Intelligence for Data Visualization

0.5 0.75 1

−0.25 0 0.25

−1 −0.75 −0.5

Figure 3.4: Heteroskedasticity forms generated for the synthetic data simulation. Different shapes are
controlled by the continuous factor a between -1 and 1. For a = −1, the residual plot
exhibits a “left-triangle” shape. And for a = 1, the residual plot exhibits a “right-triangle”
shape.

With 80,000 training images prepared, each bucket accommodated a maximum of 80000/50 = 1600

training samples. The simulator iteratively sampled parameter values from the parameter space,

generated residuals and fitted values using the data generation process, computed the distance, and

checked if the sample fitted within the corresponding bucket. This process continued until all buckets

were filled.

Similarly, we adopted the same methodology to prepare 8,000 test images for performance evaluation

and model diagnostics.

44

Advances in Artificial Intelligence for Data Visualization

normal uniform

discrete lognormal

Figure 3.5: Non-normality forms generated for the synthetic data simulation. Four different error
distributions including discrete, lognormal, normal and uniform are considered.

17 18

12 13 14 15 16

7 8 9 10 11

2 3 4 5 6

Figure 3.6: Residual plots of multiple linear regression models with non-linearity issues. The 17 shapes
are generated by varying the order of polynomial given by j in He j(.). A second predictor
x2 is introduced to the regression model to create complex shapes.

45

Advances in Artificial Intelligence for Data Visualization

17 18

12 13 14 15 16

7 8 9 10 11

2 3 4 5 6

Figure 3.7: Residual plots of models violating both the non-linearity and the heteroskedasticity assump-
tions. The 17 shapes are generated by varying the order of polynomial given by j in He j(.),
and the “left-triangle” shape is introduced by setting a = −1.

3.8 Model Architecture
The architecture of the computer vision model is adapted from the well-established VGG16 architecture

(Simonyan and Zisserman 2014). While more recent architectures like ResNet (He et al. 2016) and

DenseNet(Huang et al. 2017), have achieved even greater performance, VGG16 remains a solid

choice for many applications due to its simplicity and effectiveness. Our decision to use VGG16 aligns

with our goal of starting with a proven and straightforward model. Figure 3.9 provides a diagram

of the architecture. More details about the neural network layers used in this study are provided in

Appendix B.

The model begins with an input layer of shape n×h×w×3, capable of handling n RGB images. This

is followed by a grayscale conversion layer utilizing the luma formula under the Rec. 601 standard

(Series 2011), which converts the color image to grayscale. Grayscale suffices for our task since data

points are plotted in black. We experiment with three combinations of h and w: 32× 32, 64× 64,

and 128× 128, aiming to achieve sufficiently high image resolution for the problem at hand.

The processed image is used as the input for the first convolutional block. The model comprises

at most five consecutive convolutional blocks, mirroring the original VGG16 architecture. Within

each block, there are two 2D convolutional layers followed by two activation layers, respectively.

46

Advances in Artificial Intelligence for Data Visualization

normal uniform

discrete lognormal

Figure 3.8: Residual plots of models violating both the non-normality and the heteroskedasticity assump-
tions. The four shapes are generated by using four different error distributions including
discrete, lognormal, normal and uniform, and the “left-triangle” shape is introduced by
setting a = −1.

Subsequently, a 2D max-pooling layer follows the second activation layer. The 2D convolutional layer

convolves the input with a fixed number of 3× 3 convolution filters, while the 2D max-pooling layer

downsamples the input along its spatial dimensions by taking the maximum value over a 2×2 window

for each channel of the input. The activation layer employs the rectified linear unit (ReLU) activation

function, a standard practice in deep learning, which introduces a non-linear transformation of the

output of the 2D convolutional layer. Additionally, to regularize training, a batch normalization layer

is added after each 2D convolutional layer and before the activation layer. Finally, a dropout layer is

appended at the end of each convolutional block to randomly set some inputs to zero during training,

further aiding in regularization.

The output of the last convolutional block is summarized by either a global max pooling layer or

a global average pooling layer, resulting in a two-dimensional tensor. To leverage the information

contained in scagnostics, this tensor is concatenated with an additional n× 5 tensor, which contains

the “Monotonic”, “Sparse”, “Splines”, and “Striped” measures, along with the number of observations

for n residual plots.

The concatenated tensor is then fed into the final prediction block. This block consists of two fully-

connected layers. The first layer contains at least 128 units, followed by a dropout layer. Occasionally,

47

Advances in Artificial Intelligence for Data Visualization

Figure 3.9: Diagram of the architecture of the optimized computer vision model. Numbers at the bottom
of each box show the shape of the output of each layer. The band of each box drawn in a
darker color indicates the use of the rectified linear unit activation function. Yellow boxes are
2D convolutional layers, orange boxes are pooling layers, the grey box is the concatenation
layer, and the purple boxes are dense layers.

a batch normalization layer is inserted between the fully-connected layer and the dropout layer for

regularization purposes. The second fully-connected layer consists of only one unit, serving as the

output of the model.

The model weights θ were randomly initialized and they were optimized by the Adam optimizer

(Kingma and Ba 2014) with the mean square error loss function

θ̂ = arg min
θ

1
ntrain

ntrain
∑

i=1

(Di − fθ (Vi , Si))
2,

where ntrain is the number of training samples, Vi is the i-th residual plot and Si is the additional

information about the i-th residual plot including four scagnostics and the number of observations.

3.9 Model Training
To achieve a near-optimal deep learning model, hyperparameters like the learning rate often need

to be fine-tuned using a tuner. In our study, we utilized the Bayesian optimization tuner from

the KerasTuner Python library (O’Malley et al. 2019) for this purpose. A comprehensive list of

hyperparameters is provided in Table 3.3.

The number of base filters determines the number of filters for the first 2D convolutional layer. In

the VGG16 architecture, the number of filters for the 2D convolutional layer in a block is typically

twice the number in the previous block, except for the last block, which maintains the same number

of convolution filters as the previous one. This hyperparameter aids in controlling the complexity

48

Advances in Artificial Intelligence for Data Visualization

of the computer vision model. A higher number of base filters results in more trainable parameters.

Likewise, the number of units for the fully-connected layer determines the complexity of the final

prediction block. Increasing the number of units enhances model complexity, resulting in more

trainable parameters.

The dropout rate and batch normalization are flexible hyperparameters that work in conjunction with

other parameters to facilitate smooth training. A higher dropout rate is necessary when the model

tends to overfit the training dataset by learning too much noise (Srivastava et al. 2014). Conversely,

a lower dropout rate is preferred when the model is complex and challenging to converge. Batch

normalization, on the other hand, addresses the internal covariate shift problem arising from the

randomness in weight initialization and input data (Goodfellow et al. 2016). It helps stabilize and

accelerate the training process by normalizing the activations of each layer.

Additionally, incorporating additional inputs such as scagnostics and the number of observations can

potentially enhance prediction accuracy. Therefore, we allow the tuner to determine whether these

inputs were necessary for optimal model performance.

The learning rate is a crucial hyperparameter, as it dictates the step size of the optimization algorithm.

A high learning rate can help the model avoid local minima but risks overshooting and missing the

global minimum. Conversely, a low learning rate smoothens the training process but makes the

convergence time longer and increases the likelihood of getting trapped in local minima.

Our model was trained on the MASSIVE M3 high-performance computing platform (Goscinski et al.

2014), using TensorFlow (Abadi et al. 2016) and Keras (Chollet et al. 2015). During training, 80%

of the training data was utilized for actual training, while the remaining 20% was used as validation

data. The Bayesian optimization tuner conducted 100 trials to identify the best hyperparameter

values based on validation root mean square error. The tuner then restored the best epoch of the best

model from the trials. Additionally, we applied early stopping, terminating the training process if the

validation root mean square error fails to improve for 50 epochs. The maximum allowed epochs was

set at 2,000, although no models reached this threshold.

Based on the tuning process described above, the optimized hyperparameter values are presented in

Table 3.4. It was observable that a minimum of 32 base filters was necessary, with the preferable

choice being 64 base filters for both the 64 × 64 and 128 × 128 models, mirroring the original

VGG16 architecture. The optimized dropout rate for convolutional blocks hovered around 0.4, and

incorporating batch normalization for convolutional blocks proved beneficial for performance.

All optimized models chose to retain the additional inputs, contributing to the reduction of validation

49

Advances in Artificial Intelligence for Data Visualization

Table 3.3: Name of hyperparameters and their correspoding domain for the computer vision model.

Hyperparameter Domain

Number of base filters {4, 8, 16, 32, 64}
Dropout rate for convolutional blocks [0.1, 0.6]
Batch normalization for convolutional blocks {false, true}
Type of global pooling {max, average}
Ignore additional inputs {false, true}

Number of units for the fully-connected layer {128, 256, 512, 1024, 2048}
Batch normalization for the fully-connected layer {false, true}
Dropout rate for the fully-connected layer [0.1, 0.6]
Learning rate [10−8, 10−1]

Table 3.4: Hyperparameters values for the optimized computer vision models with different input sizes.

Hyperparameter 32× 32 64× 64 128× 128

Number of base filters 32 64 64
Dropout rate for convolutional blocks 0.4 0.3 0.4
Batch normalization for convolutional blocks true true true
Type of global pooling max average average
Ignore additional inputs false false false

Number of units for the fully-connected layer 256 256 256
Batch normalization for the fully-connected layer false true true
Dropout rate for the fully-connected layer 0.2 0.4 0.1
Learning rate 0.0003 0.0006 0.0052

error. The number of units required for the fully-connected layer was 256, a relatively modest

number compared to the VGG16 classifier, suggesting that the problem at hand was less complex.

The optimized learning rates were higher for models with higher resolution input, likely because

models with more parameters are more prone to getting stuck in local minima, requiring a higher

learning rate.

3.10 Results

3.10.1 Model Performance

The test performance for the optimized models with three different input sizes are summarized in

Table 3.5. Among these models, the 32× 32 model consistently exhibited the best test performance.

The mean absolute error of the 32× 32 model indicated that the difference between D̂ and D was

approximately 0.43 on the test set, a negligible deviation considering the normal range of D typically

falls between 0 and 7. The high R2 values also suggested that the predictions were largely linearly

correlated with the target.

50

Advances in Artificial Intelligence for Data Visualization

Table 3.5: The test performance of three optimized models with different input sizes.

RMSE R2 MAE Huber loss

32× 32 0.660 0.901 0.434 0.18
64× 64 0.674 0.897 0.438 0.19
128× 128 0.692 0.892 0.460 0.20

Figure 3.10 presents a hexagonal heatmap for D− D̂ versus D. The brown smoothing curves, fitted

by generalized additive models (Hastie 2017), demonstrate that all the optimized models perform

admirably on the test sets when 1.5 < D < 6, where no structural issues are noticeable. However,

over-predictions occurred when D < 1.5, while under-predictions occurred predominantly when

D̂ > 6.

For input images representing null plots where D = 0, it was expected that the models will over-

predict the distance, as explained in Section 3.5.1. However, it can not explain the under-prediction

issue. Therefore, we analysed the relationship between residuals and all the factors involved in the

data generating process. We found that most issues actually arose from non-linearity problems and

the presence of a second predictor in the regression model as illustrated in Figure 3.11. When the

variance for the error distribution was small, the optimized model tended to under-predict the distance.

Conversely, when the error distribution had a large variance, the model tended to over-predict the

distance.

Since most of the deviation stemmed from the presence of non-linearity violations, to further investi-

gate this, we split the test set based on violation types and re-evaluated the performance, as detailed in

Table 3.6. It was evident that metrics for null plots were notably worse compared to other categories.

Furthermore, residual plots solely exhibiting non-normality issues were the easiest to predict, with

very low test root mean square error (RMSE) at around 0.3. Residual plots with non-linearity issues

were more challenging to assess than those with heteroskedasticity or non-normality issues. When

multiple violations were introduced to a residual plot, the performance metrics typically lay between

the metrics for each individual violation.

Based on the model performance metrics, we chose to use the best-performing model evaluated on

the test set, namely the 32× 32 model, for the subsequent analysis.

3.10.2 Comparison with Human Visual Inference and Conventional Tests

3.10.2.1 Overview of the Human Subject Experiment

In order to check the validity of the proposed computer vision model, residual plots presented in the

human subject experiment conducted by Li et al. (2024) will be assessed.

51

Advances in Artificial Intelligence for Data Visualization

Figure 3.10: Hexagonal heatmap for difference in D and D̂ vs D on test data for three optimized models
with different input sizes. The brown lines are smoothing curves produced by fitting
generalized additive models. The area over the zero line in light yellow indicates under-
prediction, and the area under the zero line in light green indicates over-prediction.

Table 3.6: The training and test performance of the 32 × 32 model presented with different model
violations.

Violations #samples RMSE

no violations 155 1.267
non-linearity 2218 0.787
heteroskedasticity 1067 0.602
non-linearity + heteroskedasticity 985 0.751
non-normality 1111 0.320
non-linearity + non-normality 928 0.600
heteroskedasticity + non-normality 819 0.489
non-linearity + heteroskedasticity + non-normality 717 0.620

This study has collected 7,974 human responses to 1,152 lineups. Each lineup contains one randomly

placed true residual plot and 19 null plots. Among the 1,152 lineups, 24 are attention check lineups

in which the visual patterns are designed to be extremely obvious and very different from the

corresponding to null plots, 36 are null lineups where all the lineups consist of only null plots, 279 are

lineups with uniform predictor distribution evaluated by 11 participants, and the remaining 813 are

lineups with discrete, skewed or normal predictor distribution evaluated by 5 participants. Attention

check lineups and null lineups will not be assessed in the following analysis.

52

Advances in Artificial Intelligence for Data Visualization

Figure 3.11: Scatter plots for difference in D and D̂ vs σ on test data for the 32× 32 optimized model.
The data is grouped by whether the regression has only non-linearity violation, and whether
it includes a second predictor in the regression formula. The brown lines are smoothing
curves produced by fitting generalized additive models. The area over the zero line in light
yellow indicates under-prediction, and the area under the zero line in light green indicates
over-prediction.

Table 3.7: The performance of the 32× 32 model on the data used in the human subject experiment.

Violation RMSE R2 MAE Huber loss

heteroskedasticity 0.721 0.852 0.553 0.235
non-linearity 0.738 0.770 0.566 0.246

In Li et al. (2024), the residual plots are simulated from a data generating process which is a special

case of Equation 3.7. The main characteristic is the model violations are introduced separately,

meaning non-linearity and heteroskedasticity will not co-exist in one lineup but assigned uniformly to

all lineups. Additionally, non-normality and multiple predictors are not considered in the experimental

design.

3.10.2.2 Model Performance on the Human-evaluated Data

For each lineup used in Li et al. (2024), there is one true residual plot and 19 null plots. While the

distance D for the true residual plot depends on the underlying data generating process, the distance

D for the null plots is zero. We have used our optimized computer vision model to estimate distance

for both the true residual plots and the null plots. To have a fair comparison, H0 will be rejected if

the true residual plot has the greatest estimated distance among all plots in a lineup. Additionally,

53

Advances in Artificial Intelligence for Data Visualization

the appropriate conventional tests including the Ramsey Regression Equation Specification Error Test

(RESET) (Ramsey 1969) for non-linearity and the Breusch-Pagan test (Breusch and Pagan 1979) for

heteroskedasticity were applied on the same data for comparison.

The performance metrics of D̂ for true residual plots are outlined in Table 3.7. It is notable that all

performance metrics are slightly worse than those evaluated on the test data. Nevertheless, the mean

absolute error remains at a low level, and the linear correlation between the prediction and the true

value remains very high. Consistent with results in Table 3.6, lineups with non-linearity issues are

more challenging to predict than those with heteroskedasticity issues.

Table 3.8 provides a summary of the agreement between decisions made by the computer vision model

and conventional tests. The agreement rates between conventional tests and the computer vision

model are 85.95% and 79.69% for residual plots containing heteroskedasticity and non-linearity

patterns, respectively. These figures are higher than those calculated for visual tests conducted by

human, indicating that the computer vision model exhibits behavior more akin to the best available

conventional tests. However, Figure 3.12 shows that the computer vision model does not always

reject when the conventional tests reject. And a small number of plots will be rejected by computer

vision model but not by conventional tests. This suggests that conventional tests are more sensitive

than the computer vision model.

Figure 3.14 further illustrates the decisions made by visual tests conducted by human, computer

vision models, and conventional tests, using a parallel coordinate plots. It can be observed that all

three tests will agree with each other for around 50% of the cases. When visual tests conducted by

human do not reject, there are substantial amount of cases where computer vision model also do not

reject but conventional tests reject. There are much fewer cases that do not reject by visual tests and

conventional tests, but is rejected by computer vision models. This indicates computer vision model

can behave like visual tests conducted by human better than conventional tests. Moreover, there are

great proportion of cases where visual tests conducted by human is the only test who does not reject.

When plotting the decision against the distance, as illustrated in Figure 3.13, several notable observa-

tions emerge. Firstly, compared to conventional tests, the computer vision model tends to have fewer

rejected cases when D < 2 and fewer non-rejected cases when 2< D < 4. This suggests tests based

on the computer vision model are less sensitive to small deviations from model assumptions than

conventional tests but more sensitive to moderate deviations. Additionally, visual tests demonstrate

the lowest sensitivity to residual plots with small distances where not many residual plots are rejected

when D < 2. Similarly, for large distances where D > 4, almost all residual plots are rejected by

the computer vision model and conventional tests, but for visual tests conducted by humans, the

54

Advances in Artificial Intelligence for Data Visualization

threshold is higher with D > 5.

In Figure 3.13, rejection decisions are fitted by logistic regression models with no intercept terms

and an offset equals to log(0.05/0.95). The fitted curves for the computer vision model fall between

those of conventional tests and visual tests for both non-linearity and heteroskedasticity, which means

there is still potential to refine the computer vision model to better align its behavior with visual tests

conducted by humans.

In the experiment conducted in Li et al. (2024), participants were allowed to make multiple selections

for a lineup. The weighted detection rate was computed by assigning weights to each detection. If the

participant selected zero plots, a weight of 0.05 was assigned; otherwise, if the true residual plot was

detected, the weight was 1 divided by the number of selections. This weighted detection rate allow

us to assess the quality of the distance measure purposed in this chapter, by using the δ-difference

statistic. The δ-difference is originally defined by Chowdhury et al. (2018), is given by

δ = d̄true −max
j

�

d̄(j)null

�

for j = 1, ..., m− 1,

where d̄(j)null is the mean distance between the j-th null plot and the other null plots, d̄true is the mean

distance between the true residual plot and null plots, and m is the number of plots in a lineup.

These mean distances are used because, as noted by Chowdhury et al. (2018), the distances can

vary depending on which data plot is used for comparison. For instance, with three null plots, A,

B and C, the distance between A and B may differ from the distance between A and C. To obtain a

consistent distance for null plot A, averaging is necessary. However, this approach is not applicable to

the distance proposed in this chapter, as we only compare the residual plot against a theoretically

good residual plot. Consequently, the statistic must be adjusted to evaluate our distance measure

effectively.

One important aspect that the δ-difference was designed to capture is the empirical distribution

of distances for null plot. If we were to replace the mean distances d̄(j)null directly with D(j)null, the

distance of the j-th null plot, the resulting distribution would be degenerate, since Dnull equals zero

by definition. Additionally, D can not be derived from an image, meaning it falls outside the scope of

the distances considered by Chowdhury et al. (2018). Instead, the focus should be on the empirical

distribution of D̂, as it influences decision-making. Therefore, the adjusted δ-different is defined as

δadj = D̂−max
j

�

D̂(j)null

�

for j = 1, ..., m− 1,

55

Advances in Artificial Intelligence for Data Visualization

Table 3.8: Summary of the comparison of decisions made by computer vision model with decisions made
by conventional tests and visual tests conducted by human.

Violations #Samples #Agreements Agreement rate

Compared with conventional tests
heteroskedasticity 540 464 0.8593
non-linearity 576 459 0.7969

Compared with visual tests conducted by human
heteroskedasticity 540 367 0.6796
non-linearity 576 385 0.6684

where D̂(j)null is the estimated distance for the j-th null plot, and m is the number of plots in a lineup.

Figure 3.15 displays the scatter plot of the weighted detection rate vs the adjusted δ-difference. It

indicates that the weighted detection rate increases as the adjusted δ-difference increases, particularly

when the adjusted δ-difference is greater than zero. A negative adjusted δ-difference suggests that

there is at least one null plot in the lineup with a stronger visual signal than the true residual plot. In

some instances, the weighted detection rate is close to one, yet the adjusted δ-difference is negative.

This discrepancy implies that the distance measure, or the estimated distance, may not perfectly

reflect actual human behavior.

3.11 Examples
In this section, we present the performance of trained computer vision model on three example

datasets. These include the dataset associated with the residual plot displaying a “left-triangle” shape,

as displayed in Figure 3.1, along with the Boston housing dataset (Harrison Jr and Rubinfeld 1978),

and the “dino” datasets from the datasauRus R package (Davies et al. 2022).

The first example illustrates a scenario where both the computer vision model and human visual

inspection successfully avoid rejecting H0 when H0 is true, contrary to conventional tests. This

underscores the necessity of visually examining the residual plot.

In the second example, we encounter a more pronounced violation of the model, resulting in rejection

of H0 by all three tests. This highlights the practicality of the computer vision model, particularly for

less intricate tasks.

The third example presents a situation where the model deviation is non-typical. Here, the computer

vision model and human visual inspection reject H0, whereas some commonly used conventional tests

do not. This emphasizes the benefits of visual inspection and the unique advantage of the computer

vision model, which, like humans, makes decisions based on visual discoveries.

56

Advances in Artificial Intelligence for Data Visualization

Non−linearity Heteroskedasticity

Reject No Reject No

Reject

No

Conventional tests reject

C
om

pu
te

r
vi

si
on

 m
od

el
 r

ej
ec

ts

Figure 3.12: Rejection rate (p-value ≤ 0.05) of computer vision models conditional on conventional
tests on non-linearity (left) and heteroskedasticity (right) lineups displayed using a mosaic
plot. When the conventional test fails to reject, the computer vision mostly fails to reject
the same plot as well as indicated by the height of the top right yellow rectangle, but there
are non negliable amount of plots where the conventional test rejects but the computer
vision model fails to reject as indicated by the width of the top left yellow rectangle.

3.11.1 Left-triangle

In Section 3.1, we presented an example residual plot showcased in Figure 3.1, illustrating how

humans might misinterpret the “left-triangle” shape as indicative of heteroskedasticity. Additionally,

the Breusch-Pagan test yielded a rejection with a p-value of 0.046, despite the residuals originating

from a correctly specified model. Figure 3.17 offers a lineup for this fitted model, showcasing various

degrees of “left-triangle” shape across all residual plots. This phenomenon is evidently caused by the

skewed distribution of the fitted values. Notably, if the residual plot were evaluated through a visual

test, it would not be rejected since the true residual plot positioned at 10 can not be distinguished

from the others.

Figure 3.16 presents the results of the assessment by the computer vision model. Notably, the observed

visual signal strength is considerably lower than the 95% sample quantile of the null distribution.

Moreover, the bootstrapped distribution suggests that it is highly improbable for the fitted model to be

misspecified as the majority of bootstrapped fitted models will not be rejected. Thus, for this particular

fitted model, both the visual test and the computer vision model will not reject H0. However, the

57

Advances in Artificial Intelligence for Data Visualization

Non−linearity Heteroskedasticity

0 2 4 6 0 2 4 6 8

0.0

0.4

0.8

D

R
ej

ec
t

Computer vision model Conventional test Visual test

Figure 3.13: Comparison of power of visual tests, conventional tests and the computer vision model.
Marks along the x-axis at the bottom of the plot represent rejections made by each type of
test. Marks at the top of the plot represent acceptances. Power curves are fitted by logistic
regression models with no intercept but an offset equals to log(0.05/0.95).

Breusch-Pagan test will reject H0 because it can not effectively utilize information from null plots.

The attention map at Figure 3.16B suggests that the estimation is highly influenced by the top-right

and bottom-right part of the residual plot, as it forms two vertices of the triangular shape. A principal

component analysis (PCA) is also performed on the output of the global pooling layer of the computer

vision model. As mentioned in Simonyan and Zisserman (2014), a computer vision model built upon

the convolutional blocks can be viewed as a feature extractor. For the 32× 32 model, there are 256

features outputted from the global pooling layer, which can be further used for different visual tasks

not limited to distance prediction. To see if these features can be effectively used for distinguishing null

plots and true residual plot, we linearly project them into the first and second principal components

space as shown in Figure 3.16D. It can be observed that because the bootstrapped plots are mostly

similar to the null plots, the points drawn in different colors are mixed together. The true residual

plot is also covered by both the cluster of null plots and cluster of bootstrapped plots. This accurately

reflects our understanding of Figure 3.17.

3.11.2 Boston Housing

The Boston housing dataset, originally published by Harrison Jr and Rubinfeld (1978), offers insights

into housing in the Boston, Massachusetts area. For illustration purposes, we utilize a reduced version

58

Advances in Artificial Intelligence for Data Visualization

Not reject

Reject

Not reject

Reject

Not reject

Reject

Not reject

Reject

Not reject

Reject

Not reject

Reject

Non−linearity Heteroskedasticity

Visual
test

Computer
vision
model

Conventional
test

Visual
test

Computer
vision
model

Conventional
test

Figure 3.14: Parallel coordinate plots of decisions made by computer vision model, conventional tests
and visual tests made by human.

0.00

0.25

0.50

0.75

1.00

−4 0 4
δadj

W
ei

gh
te

d
de

te
ct

io
n

ra
te

Figure 3.15: A weighted detection rate vs adjusted δ-difference plot. The brown line is smoothing curve
produced by fitting generalized additive models.

from Kaggle, comprising 489 rows and 4 columns: average number of rooms per dwelling (RM),

percentage of lower status of the population (LSTAT), pupil-teacher ratio by town (PTRATIO), and

median value of owner-occupied homes in $1000’s (MEDV). In our analysis, MEDV will serve as the

response variable, while the other columns will function as predictors in a linear regression model.

Our primary focus is to detect non-linearity, because the relationships between RM and MEDV or

LSTAT and MEDV are non-linear.

Figure 3.18 displays the residual plot and the assessment conducted by the computer vision model. A

59

Advances in Artificial Intelligence for Data Visualization

(A) Residual plot (MVI = 5.35, weak) (B) Attention map

0.0

0.5

1.0

1.5

1 2 3

D̂

D
en

si
ty

Qnull(0.95) observed D̂

Boot Null

Conventional p−value = 0.0457

(C) Density plot of estimated D

Observed

−10

−5

0

5

−40 −20 0 20
PC1 (91%)

P
C

2
(9

%
)

Boot Null

(D) PCA for extracted features

Figure 3.16: A summary of the residual plot assessment evaluted on 200 null plots and 200 bootstrapped
plots. (A) The true residual plot exhibiting a “left-triangle” shape. (B) The attention map
produced by computing the gradient of the output with respect to the greyscale input. (C)
The density plot of estimated distance for null plots and bootstrapped plots. The green area
indicates the distribution of estimated distances for bootstrapped plots, while the yellow
area represents the distribution of estimated distances for null plots. The fitted model will
not be rejected since D̂ <Qnull(0.95). (D) plot of first two principal components of features
extracted from the global pooling layer of the computer vision model.

clear non-linearity pattern resembling a “U” shape is shown in the plot A. Furthermore, the RESET

test yields a very small p-value. The estimated distance D̂ significantly exceeds Qnull(0.95), leading

to rejection of H0. The bootstrapped distribution also suggests that almost all the bootstrapped fitted

models will be rejected, indicating that the fitted model is unlikely to be correctly specified. The

attention map in plot B suggests the center of the image has higher leverage than other areas, and

60

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 3.17: A lineup of residual plots displaying “left-triangle” visual patterns. The true residual plot
occupies position 10, yet there are no discernible visual patterns that distinguish it from
the other plots.

it is the turning point of the “U” shape. The CPA provided in plot D shows two distinct clusters

of data points, further underling the visual differences between bootstrapped plots and null plots.

This coincides the findings from Figure 3.19, where the true plot exhibiting a “U” shape is visually

distinctive from null plots. If a visual test is conducted by human, H0 will also be rejected.

3.11.3 DatasauRus

The computer vision model possesses the capability to detect not only typical issues like non-linearity,

heteroskedasticity, and non-normality but also artifact visual patterns resembling real-world objects,

as long as they do not appear in null plots. These visual patterns can be challenging to categorize in

61

Advances in Artificial Intelligence for Data Visualization

(A) Residual plot (MVI = 10.3, strong) (B) Attention map

0

1

2

2 4 6

D̂

D
en

si
ty

Qnull(0.95) observed D̂

Boot Null

Conventional p−value = 7.82e−41

(C) Density plot of estimated D

Observed

−10

−5

0

5

10

−20 −10 0 10 20 30
PC1 (93%)

P
C

2
(5

%
)

Boot Null

(D) PCA for extracted features

Figure 3.18: A summary of the residual plot assessment for the Boston housing fitted model evaluted
on 200 null plots and 200 bootstrapped plots. (A) The true residual plot exhibiting a “U”
shape. (B) The attention map produced by computing the gradient of the output with
respect to the greyscale input. (C) The density plot of estimated distance for null plots
and bootstrapped plots. The blue area indicates the distribution of estimated distances for
bootstrapped plots, while the yellow area represents the distribution of estimated distances
for null plots. The fitted model will be rejected since D̂ ≥Qnull(0.95). (D) plot of first two
principal components of features extracted from the global pooling layer of the computer
vision model.

terms of model violations. Therefore, we will employ the RESET test, the Breusch-Pagan test, and the

Shapiro-Wilk test (Shapiro and Wilk 1965) for comparison.

The “dino” dataset within the datasauRus R package exemplifies this scenario. With only two

columns, x and y, fitting a regression model to this data yields a residual plot resembling a “dinosaur”,

62

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 3.19: A lineup of residual plots for the Boston housing fitted model. The true residual plot is at
position 7. It can be easily identified as the most different plot.

as displayed in Figure 3.20A. Unsurprisingly, this distinct residual plot stands out in a lineup, as

shown in Figure 3.21. A visual test conducted by humans would undoubtedly reject H0.

According to the residual plot assessment by the computer vision model, D̂ exceeds Qnull(0.95),

warranting a rejection of H0. Additionally, most of the bootstrapped fitted models will be rejected,

indicating an misspecified model. However, both the RESET test and the Breusch-Pagan test yield

p-values greater than 0.3, leading to a non-rejection of H0. Only the Shapiro-Wilk test rejects the

normality assumption with a small p-value.

More importantly, the attention map in Figure 3.20B clearly exhibits a “dinosaur” shape, strongly

suggesting the prediction of the distance is based on human perceptible visual patterns. The computer

63

Advances in Artificial Intelligence for Data Visualization

vision model is also capable of capturing the contour or the outline of the embedded shape, just

like human being reading residual plots. The PCA in Figure 3.20D also shows that the cluster of

bootstrapped plots is at the corner of the cluster of null plots.

More importantly, the attention map in Figure 3.20B clearly exhibits a “dinosaur” shape, strongly

suggesting that the distance prediction is based on human-perceptible visual patterns. The computer

vision model effectively captures the contour or outline of the embedded shape, similar to how

humans interpret residual plots. Additionally, the PCA in Figure 3.20D demonstrates that the cluster

of bootstrapped plots is positioned at the corner of the cluster of null plots.

In practice, without accessing the residual plot, it would be challenging to identify the artificial

pattern of the residuals. Moreover, conducting a normality test for a fitted regression model is not

always standard practice among analysts. Even when performed, violating the normality assumption

is sometimes deemed acceptable, especially considering the application of quasi-maximum likelihood

estimation in linear regression. This example underscores the importance of evaluating residual plots

and highlights how the proposed computer vision model can facilitate this process.

3.12 Limitations and Future Work
Despite the computer vision model performing well with general cases under the synthetic data

generation scheme and the three examples used in this chapter, this study has several limitations that

could guide future work.

The proposed distance measure assumes that the true model is a classical normal linear regression

model, which can be restrictive. Although this chapter does not address the relaxation of this

assumption, there are potential methods to evaluate other types of regression models. The most

comprehensive approach would be to define a distance measure for each different class of regression

model and then train the computer vision model following the methodology described in this chapter.

To accelerate training, one could use the convolutional blocks of our trained model as a feature

extractor and perform transfer learning on top of it, as these blocks effectively capture shapes in

residual plots. Another approach would be to transform the residuals so they are roughly normally

distributed and have constant variance. If only raw residuals are used, the distance-based statistical

testing compares the difference in distance to a classical normal linear regression model for the true

plot and null plots. This comparison is meaningful only if the difference can be identified by the

distance measure proposed in this chapter.

There are other types of residual plots commonly used in diagnostics, such as residuals vs. predictor

and quantile-quantile plots. In this study, we focused on the most commonly used residual plot as

64

Advances in Artificial Intelligence for Data Visualization

(A) Residual plot (MVI = 8.89, strong) (B) Attention map

0.0

0.5

1.0

1.5

2 4 6

D̂

D
en

si
ty

Qnull(0.95) observed D̂

Boot Null

RESET test p−value = 0.742
Breusch−Pagan test p−value = 0.36
Shapiro−Wilk test p−value = 9.21e−05

(C) Density plot of estimated D

Observed

−10

−5

0

5

10

15

−40 −20 0
PC1 (88%)

P
C

2
(8

%
)

Boot Null

(D) PCA for extracted features

Figure 3.20: A summary of the residual plot assessment for the datasauRus fitted model evaluated on
200 null plots and 200 bootstrapped plots. (A) The residual plot exhibits a “dinosaur”
shape. (B) The attention map produced by computing the gradient of the output with
respect to the greyscale input. (C) The density plot of estimated distance for null plots
and bootstrapped plots. The blue area indicates the distribution of estimated distances for
bootstrapped plots, while the yellow area represents the distribution of estimated distances
for null plots. The fitted model will be rejected since D̂ ≥Qnull(0.95). (D) plot of first two
principal components of features extracted from the global pooling layer of the computer
vision model.

a starting point for exploring the new field of automated visual inference. Similarly, we did not

explore other, more sophisticated computer vision model architectures and specifications for the

same reason. While the performance of the computer vision model is acceptable, there is still room

for improvement to achieve behavior more closely resembling that of humans interpreting residual

plots. This may require external survey data or human subject experiment data to understand the

65

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 3.21: A lineup of residual plots for the fitted model on the “dinosaur” dataset. The true residual
plot is at position 17. It can be easily identified as the most different plot as the visual
pattern is extremely artificial.

fundamental differences between our implementation and human evaluation.

3.13 Conclusions
In this chapter, we have introduced a distance measure based on Kullback-Leibler divergence to

quantify the disparity between the residual distribution of a fitted classical normal linear regression

model and the reference residual distribution assumed under correct model specification. This

distance measure effectively captures the magnitude of model violations in misspecified models. We

propose a computer vision model to estimate this distance, utilizing the residual plot of the fitted

model as input. The resulting estimated distance serves as the foundation for constructing a single

66

Advances in Artificial Intelligence for Data Visualization

Model Violations Index (MVI), facilitating the quantification of various model violations.

Moreover, the estimated distance enables the development of a formal statistical testing procedure by

evaluating a large number of null plots generated from the fitted model. Additionally, employing

bootstrapping techniques and refitting the regression model allows us to ascertain how frequently

the fitted model is considered misspecified if data were repeatedly obtained from the same data

generating process.

The trained computer vision model demonstrates strong performance on both the training and

test sets, although it exhibits slightly lower performance on residual plots with non-linearity visual

patterns compared to other types of violations. The statistical tests relying on the estimated distance

predicted by the computer vision model exhibit lower sensitivity compared to conventional tests

but higher sensitivity compared to visual tests conducted by humans. While the estimated distance

generally mirrors the strength of the visual signal perceived by humans, there remains scope for

further improvement in its performance.

Several examples are provided to showcase the effectiveness of the proposed method across different

scenarios, emphasizing the similarity between visual tests and distance-based tests. Overall, both

visual tests and distance-based tests can be viewed as ensemble of tests, aiming to assess any violations

of model assumptions collectively. In contrast, individual residual diagnostic tests such as the RESET

test and the Breusch-Pagan test only evaluate specific violations of model assumptions. In practice,

selecting an appropriate set of statistical tests for regression diagnostics can be challenging, particularly

given the necessity of adjusting the significance level for each test.

Our method holds significant value as it helps alleviate a portion of analysts’ workload associated with

assessing residual plots. While we recommend analysts to continue reading residual plots whenever

feasible, as they offer invaluable insights, our approach serves as a valuable tool for automating the

diagnostic process or for supplementary purposes when needed.

67

Chapter 4

Software for Automated Residual Plot As-

sessment: autovi and autovi.web

Regression software is widely available today, but tools for effective diagnostics are still lagging.

Perhaps, one of the reasons is that it is hard. Conventional tests, that would make the task easy,

are often too sensitive, which would result in adequate models being abandoned if the analyst

strictly adhered to the test decision. The recommended advice is to have the analyst assess the

strength of patterns in residual plots. This requires human effort and also suffers from the potential

for inconsistent decisions from different analysts. Using a lineup protocol can help to alleviate

inconsistency, but requires even more human effort. This is the type of task where a robot might

be employed to do the disagreeable work that currently requires a human. Here we describe a new

R package that includes a computer vision model for automated assessment of residual plots, and

an accompanying Shiny app for ease of use. For a user-provided sample of residuals, it predicts a

measure of visual signal strength (VSS) and provides a suite of supporting information to assist the

analyst diagnose their model fit.

4.1 Introduction
Regression analysis is a fundamental statistical technique widely used for modeling data from many

fields. To diagnose the fit of a model it is recommended that the residuals are plotted. If the fit is

good, any variation remaining should be noise, consistent with sampling from a distribution specified

by the error model. Deviations that might be observed from a residual plot are non-normality,

heteroscedasticity, and other associations with the fitted values. Chapter 2 established that visual

methods for assessing residuals are superior to conventional testing in that they are not so sensitive to

small departures. Chapter 3 provides a computer vision model to alleviate the human labor needed

68

Advances in Artificial Intelligence for Data Visualization

to visually assessing residual plots. The next step is to deliver the use of the computer vision model

to potential users, so that it can be widely used to the benefit of the analytics community.

Software for regression analysis tools is widely available. The Comprehensive R Archive Network

(CRAN) (Hornik 2012) hosts a vast array of packages, many of which provide tools to diagnose

models using residual plots. These packages can be broadly categorized into three groups: general

purpose, enhanced diagnostics, diagnostics with statistical testing.

General-purpose regression analysis tools are the largest and most commonly used group. These

packages are not specifically designed for graphical diagnostics of residuals in linear regression

but offer this functionality as part of a broader set of statistical tools. These include the stats

package (R Core Team 2022), which includes common diagnostic plots like residuals vs fitted values,

quantile-quantile (Q-Q) plots, and residuals vs leverage plots. Other packages such as jtools (Long

2022), olsrr (Hebbali 2024), rockchalk (Johnson 2022), and ggResidpanel (Goode and Rey

2019) provide similar graphical tools with alternative aesthetic styles or interactive features. They all

fundamentally deliver diagnostic plots as outlined in the classic text Cook and Weisberg (1982). As

noted in Li et al. (2024), relying solely on subjective assessments of data plots can lead to problems,

such as over-interpreting random patterns as model violations.

Enhanced visual diagnostics forms the second group, which offer advanced visual aids for interpreting

diagnostic plots. This includes ecostats (Warton 2023), which adds simulation envelopes to residual

plots, and DHARMa (Hartig 2022), which compares the empirical 0.25, 0.5, and 0.75 quantiles in scaled

residuals with their theoretical counterparts. DHARMa’s focus is detecting model violations such as

heteroscedasticity and incorrect functional forms, and uncovering issues specific to generalized linear

models and mixed-effect models, like over/under-dispersion. It also adds results from conventional

tests as annotations, labels, or text within the plot, to assist in avoiding misinterpretation.

Statistical testing for visual discoveries is the third group, which focuses on providing tools for

conducting formal statistical tests for visual discoveries obtained from diagnostic plots (Buja et al.

2009a). Packages include the nullabor (Wickham et al. 2020) HLMdiag (Loy and Hofmann 2014)

and regressinator (Reinhart 2024). These enables users to compare the actual residual plot with

samples from null distributions, and can help quantify the significance of patterns.

However, as discussed in Chapter 3, the lineup protocol has significant limitations in large-scale

applications due dependence on human labor. Thus a computer vision model was developed with

an associated statistical testing procedure to automate the assessment of residual plots. This model

takes a residual plot and a vector of auxiliary variables (such as the number of observations) as inputs

and outputs the predicted visual signal strength (VSS). This strength estimates the distance between

69

Advances in Artificial Intelligence for Data Visualization

the residual distribution of the fitted regression model and the reference distribution assumed under

correct model specification.

To make the statistical testing procedure and trained computer vision model widely accessible, we

developed the R package autovi, and a web interface, autovi.web to make it easy for users to

automatically read their residual plots with the trained computer vision model.

The remainder of this chapter is structured as follows: Section 4.2 provides a detailed documentation of

the autovi package, including its usage and infrastructure. Section 4.3 focuses on the autovi.web

interface, describing its design and usage, along with illustrative examples. Finally, Section 4.4

presents the main conclusions of this work.

4.2 R package: autovi
The main purpose of autovi is to provide rejection decisions and p-values for testing whether a

regression model is correctly specified. The package introduces a novel approach to automating

statistical analysis, particularly in the interpretation of residual plots. The name autovi stands for

automated visual inference. While initially designed for linear regression residual diagnostics, it

has the potential to be extended to broader visual inference applications, as we discuss in section

Section 4.2.4.

4.2.1 Implementation

The package autovi is built upon the bandicoot object-oriented programming (OOP) system (Li

2024), which marks a departure from R’s conventional S3 generic system. The adoption of an OOP

architecture enhances flexibility and modularity, enabling users to redefine key functions within the

infrastructure through method overriding. While similar functionality could be replicated using R’s

S3 system with generic functions, the OOP system offers a more structured and extensible foundation

for the package.

The infrastructure of autovi demonstrates the effective integration of multiple programming lan-

guages and libraries to create a comprehensive analytical tool. It depends on five core libraries from

Python and R, each contributing critically to the analysis pipeline. In Python, pillow (Clark et al.

2015) handles image processing tasks, including reading PNG files of residual plots, resizing them,

and converting them into input tensors for further analysis. The TensorFlow (Abadi et al. 2016)

library, a cornerstone of contemporary machine learning, is employed to predict the VSS of these

residual plots, utilizing a pre-trained convolutional neural network.

Within the R environment, autovi utilizes several libraries. ggplot2 (Wickham 2016) is employed

to generate the initial residual plots, which are then saved as PNG files, using as the primary visual

70

Advances in Artificial Intelligence for Data Visualization

input for the analysis. The cassowaryr (Mason et al. 2022) library calculates scagnostics (scatter

plot diagnostics) of the residual plots, providing numerical features that capture various statistical

properties of the plots. These scagnostics complement the visual analysis by supplying quantitative

metrics as secondary input to the computer vision model. The reticulate (Ushey et al. 2024)

package is used to bridge R and Python, allowing for seamless communication between the two

languages and supporting an integrated infrastructure.

4.2.2 Installation

The autovi package is available on CRAN. It is actively developed and maintained, with the latest

updates accessible on GitHub at https://github.com/TengMCing/autovi. The code discussed in this

chapter is based on autovi version 0.4.1.

The package includes internal functions to check the current Python environment used by the

reticulate package. If the necessary Python packages are not installed in the Python interpreter,

an error will be raised. If you want to select a specific Python environment, you can do so by calling

the reticulate::use_python() function before using the autovi package.

4.2.3 Usage

To get started quickly, only calls three functions are necessary to obtain a summary of the automated

residual assessment:

library(autovi)

checker <- residual_checker(fitted_model = lm(dist ~ speed, data = cars))

checker$check()

-- <AUTO_VI object>

Status:

- Fitted model: lm

- Keras model: UNKNOWN

- Output node index: 1

- Result:

- Observed visual signal strength: 3.162 (p-value = 0.0396)

- Null visual signal strength: [100 draws]

- Mean: 1.274

- Quantiles:

71

https://github.com/TengMCing/autovi

Advances in Artificial Intelligence for Data Visualization

25% 50% 75% 80% 90% 95% 99%

0.8021 1.1109 1.5751 1.6656 1.9199 2.6564 3.3491

- Bootstrapped visual signal strength: [100 draws]

- Mean: 2.786 (p-value = 0.05941)

- Quantiles:

25% 50% 75% 80% 90% 95% 99%

2.452 2.925 3.173 3.285 3.463 3.505 3.652

- Likelihood ratio: 0.7275 (boot) / 0.06298 (null) = 11.55

1. Load the package using the library() function.

2. Construct a checker with a linear regression model.

3. Call the check() method of the checker with default arguments. This predicts the VSS for the

true residual plot, 100 null plots, and 100 bootstrapped plots, storing the predictions internally.

A concise report of the check results will be printed.

The summary reports key findings such as the VSS of the true residual plot and the p-value of the

automated visual test. The p-value is the ratio of null plots that have VSS greater than or equal to

that of the true residual plot. We typically reject the null hypothesis when the p-value is smaller than

or equal to a desired significance level, such as 5%. The report also provides sample quantiles of VSS

for null and bootstrapped plots, helping to explain the severity and likelihood of model violations.

Although the p-value is sufficient for automated decision-making, users can visually inspect the

original residual plot alongside a sample null plot. This visual comparison can clarify why H0 is

either rejected or not, and help identify potential remedies. The plot_pair() and plot_lineup()

methods facilitate this comparison.

checker$plot_pair()

72

Advances in Artificial Intelligence for Data Visualization

true null

Figure 4.1: True plot alongside one null plot, for quick comparison.

The plot_pair() method (Figure 4.1) displays the true residual plot on the left and a single null

plot on the right. If a full lineup was shown, the true residual plot would be embedded in a page of

null plots. Users should look for any distinct visual patterns in the true residual plot that are absent in

the null plot. Running these functions multiple times can help any visual suspicions, as each execution

generates new random null plots for comparison.

The package offers a straightforward visualization of the assessment result through the sum-

mary_plot() function.

checker$summary_plot()

73

Advances in Artificial Intelligence for Data Visualization

0.0

0.2

0.4

0.6

0.8

1 2 3 4
Visual signal strength

D
en

si
ty

linetype

95% quantile of the null distribution

Observed vss

Boot

Null

P−value = 0.0396, Likelihood ratio = 11.55

Summary of check result (density)

Figure 4.2: Summary plot comparing the densities of VSS for bootstrapped residual samples (red)
relative to VSS for null plots (blue).

In the result, shown in Figure 4.2, the blue area represents the density of VSS for null residual plots,

while the red area shows the density for bootstrapped residual plots. The dashed line indicates the

VSS of the true residual plot, and the solid line marks the critical value at a 95% significance level.

The p-value and the likelihood ratio are displayed in the subtitle. The likelihood ratio represents the

ratio of the likelihood of observing the VSS of the true residual plot from the bootstrapped distribution

compared to the null distribution.

Interpreting the plot involves several key aspects. If the dashed line falls to the right of the solid

line, it suggests rejecting the null hypothesis. The degree of overlap between the red and blue areas

indicates similarity between the true residual plot and null plots; greater overlap suggests more

similarity. Lastly, the portion of the red area to the right of the solid line represents the percentage of

bootstrapped models considered to have model violations.

This visual summary provides an intuitive way to assess the model’s fit and potential violations,

allowing users to quickly grasp the results of the automated analysis.

4.2.4 Modularized Infrastructure

The initial motivation for developing autovi was to create a convenient interface for sharing the

models described and trained in Chapter 3. However, recognizing that the classical normal linear

regression model represents a restricted class of models, we sought to avoid limiting the potential for

future extensions, whether by the original developers or other users. As a result, the package was

designed to function seamlessly with linear regression models with minimal modification and few

required arguments, while also accommodating other classes of models through partial infrastructure

74

Advances in Artificial Intelligence for Data Visualization

Figure 4.3: Diagram illustrating the infrastructure of the R package autovi. The modules in green
are primary inputs provided by users. Modules in blue are overridable methods that can
be modified to accommodate users’ specific needs. The module in yellow is a pre-defined
non-overridable method. The modules in red are primary outputs of the package.

substitution. This modular and customizable design allows autovi to handle a wide range of residual

diagnostics tasks.

The infrastructure of autovi consists of ten core modules: data extraction, bootstrapping and model

refitting, fitted values and residuals extraction, auxiliary computation, null residual simulation,

plotting, plot saving, image reading and resizing, VSS prediction, and p-value computation. Each

module is designed with minimal dependency on the preceding modules, allowing users to customize

parts of the infrastructure without affecting its overall integrity. An overview of this infrastructure is

illustrated in Figure Figure 4.3.

The modules for VSS prediction and p-value computation are predefined and cannot be overridden,

although users can interact with them directly through function arguments. Similarly, the image

reading and resizing module is fixed but will adapt to different Keras models by checking their input

shapes. The remaining seven modules are designed to be overridable, enabling users to tailor the

infrastructure to their specific needs. These modules are discussed in detail in the following sections.

4.2.4.1 Initialization

An autovi checker can be initialized by supplying two primary inputs, including a regression model

object, such as an lm object representing the result of a linear regression model, and a trained

computer vision model compatible with the Keras (Chollet et al. 2015) Application Programming

Interface (API), to the AUTO_VI class constructor auto_vi(). The residual_checker() introduced

75

Advances in Artificial Intelligence for Data Visualization

in Section 4.2.3 is a thin wrapper around auto_vi(), which will call get_keras_model() during

initialization. get_keras_model() is a function to download a trained computer vision model

(described in Chapter 3) from GitHub. “vss_phn_32” specifies a model that predicts VSS and is trained

on residuals with polynomial, heteroskedasticity, and non-normality patterns (phn). More details

about the hosted models will be provided in Section 4.2.7.

The input of the constructor will be stored in the checker and can be accessed by the user through

the $ operator.

library(autovi)

checker <- auto_vi(fitted_model = lm(dist ~ speed, data = cars),

keras_model = get_keras_model("vss_phn_32"))

Optionally, the user may specify the node index of the output layer of the trained computer vision

model to be monitored by the checker via the node_index argument if there are multiple output

nodes. This is particularly useful for multiclass classifiers when the user wants to use one of the nodes

as a VSS indicator.

After initializing the object, you can print the checker to view its status.

<AUTO_VI object>

Status:

- Fitted model: lm

- Keras model: (None, 32, 32, 3) + (None, 5) -> (None, 1)

- Output node index: 1

- Result: UNKNOWN

The status includes the list of regression model classes (as provided by the built-in class() function),

the input and output shapes of the Keras model in the standard Numpy format (Harris et al. 2020),

the output node index being monitored, and the assessment result. If no check has been run yet, the

assessment result will display as “UNKNOWN”.

4.2.4.2 Fitted Values and Residuals Extraction

To be able to predict VSS for a residual plot, both fitted values and residuals are needed to be

extracted from the regression model object supplied by the user. In R, statistical models like lm (linear

model) and glm (generalized linear model) typically support the use of generic functions such as

fitted() and resid() to retrieve these values. The get_fitted_and_resid() method, called

by the checker, relies on these generic functions by default. However, generic functions only work

with classes that have appropriate method implementations. Some regression modeling packages

76

Advances in Artificial Intelligence for Data Visualization

may not fully adhere to the stats package guidelines for implementing these functions. In such

cases, overriding the method becomes necessary.

By design, the get_fitted_and_resid() method accepts a regression model object as input and

returns a tibble (a modern presentation of the data.frame) with two columns: .fitted and

.resid, representing the fitted values and residuals, respectively. If no input is supplied, the method

uses the regression model object stored in the checker. Although modules in the autovi infrastructure

make minimal assumptions about other modules, they do require strictly defined input and output

formats to ensure data validation and prevent fatal bugs. Therefore, any overridden method should

follow to these conventions.

checker$get_fitted_and_resid()

A tibble: 50 x 2

.fitted .resid

<dbl> <dbl>

1 -1.85 3.85

2 -1.85 11.8

3 9.95 -5.95

4 9.95 12.1

5 13.9 2.12

6 17.8 -7.81

7 21.7 -3.74

8 21.7 4.26

9 21.7 12.3

10 25.7 -8.68

i 40 more rows

4.2.4.3 Data Extraction

For linear regression model in R, the model frame contains all the data required by a formula

for evaluation. This is essential for bootstrapping and refitting the model when constructing a

bootstrapped distribution of VSS. Typically, the model frame can be extracted from the regression

model object using the model.frame() generic function, which is the default method used by

get_data(). However, some regression models do not use a formula or are evaluated differently,

potentially lacking a model frame. In such cases, users can either provide the data used to fit the

regression model through the data argument when constructing the checker, or customize the method

to better suit their needs. It’s worth noting that this module is only necessary if bootstrapping is

77

Advances in Artificial Intelligence for Data Visualization

required, as the model frame is not used in other modules of the infrastructure.

The get_data() method accepts a regression model object as input and returns a data.frame

representing the model frame of the fitted regression model. If no input is supplied, the regression

model stored in the checker will be used.

checker$get_data() |>

head()

dist speed

1 2 4

2 10 4

3 4 7

4 22 7

5 16 8

6 10 9

4.2.4.4 Bootstrapping and Model Refitting

Bootstrapping a regression model typically involves sampling the observations with replacement

and refitting the model with the bootstrapped data. The boot_method() method follows this

bootstrapping scheme by default. It accepts a fitted regression model and a data.frame as inputs,

and returns a tibble of bootstrapped residuals. If no inputs are provided, the method uses the

regression model stored in the checker and the result of the get_data() method.

Note that instead of calling get_data() implicitly within the method, it is used as part of the default

argument definition. This approach allows users to bypass the get_data() method entirely and

directly supply a data.frame to initiate the bootstrap process. Many other methods in autovi adopt

this principle when possible, where dependencies are explicitly listed in the formal arguments. This

design choice enhances the reusability and isolation of modules, offers better control for testing, and

simplifies the overall process.

checker$boot_method(data = checker$get_data())

A tibble: 50 x 2

.fitted .resid

<dbl> <dbl>

1 27.0 -2.96

2 38.8 -12.8

3 34.8 -8.82

78

Advances in Artificial Intelligence for Data Visualization

4 27.0 -13.0

5 11.2 4.76

6 42.7 -2.68

7 42.7 -2.68

8 38.8 -18.8

9 38.8 15.2

10 -4.47 6.47

i 40 more rows

4.2.4.5 Auxiliary Computation

As described in Chapter 3, in some cases, a residual plot alone may not provide enough information

to accurately determine VSS. For instance, when the points in the residual plot have significant

overlap, the trend and shape of the residual pattern can be difficult to discern. Including auxiliary

variables, such as the number of observations, as additional inputs to the computer vision model can be

beneficial. To address this, autovi includes internal functions within the checker that automatically

detect the number of inputs required by the provided Keras model. If multiple inputs are necessary,

the checker invokes the auxiliary() method to compute these additional inputs.

The auxiliary() method takes a data.frame containing fitted values and residuals as input and

returns a data.frame with five numeric columns. These columns represent four scagnostics —

“Monotonic”, “Sparse”, “Striped”, and “Splines” — calculated using the cassowaryr package, as well

as the number of observations. This approach is consistent with the training process of the computer

vision models described in Chapter 3. If no data.frame is provided, the method will default to

retrieving fitted values and residuals by calling get_fitted_and_resid().

Technically, any Keras-implemented computer vision model can be adapted to accept an image as

the primary input and additional variables as secondary inputs by adding a data pre-processing

layer before the actual input layer. If users wish to override auxiliary(), the output should be a

data.frame with a single row and the number of columns such that its concatenation matches the

number of parameters for the corresponding layer in the supplied Keras model.

checker$auxiliary()

A tibble: 1 x 5

measure_monotonic measure_sparse measure_splines measure_striped n

<dbl> <dbl> <dbl> <dbl> <int>

1 0.0621 0.470 0.0901 0.62 50

79

Advances in Artificial Intelligence for Data Visualization

4.2.4.6 Null Residual Simulation

A fundamental element of the automated residual assessment described in Chapter 3 is comparing the

VSS of null plots with that of the true residual plot. However, due to the variety of regression models,

there is no universal method for simulating null residuals that are consistent with model assumptions.

Fortunately, for classical normal linear regression models, null residuals can be effectively simulated

using the residual rotation method, as outlined in Buja et al. (2009a). This process involves generating

random draws from a standard normal distribution, regressing these draws on the original predictors,

and then rescaling the resulting residuals by the ratio of the residual sum of squares to the that of the

original linear regression model. Other regression models, such as glm (generalized linear model)

and gam (generalized additive model), generally cannot use this method to efficiently simulate null

residuals. Therefore, it is recommended that users override the null_method() to suit their specific

model. The null_method() takes a fitted regression model as input, defaulting to the regression

model stored in the checker, and returns a tibble.

checker$null_method()

A tibble: 50 x 2

.fitted .resid

<dbl> <dbl>

1 -1.85 18.2

2 -1.85 -0.765

3 9.95 -12.8

4 9.95 18.6

5 13.9 2.57

6 17.8 7.03

7 21.7 -11.1

8 21.7 -13.2

9 21.7 -12.6

10 25.7 3.57

i 40 more rows

4.2.4.7 Plotting

Plotting is a crucial aspect of residual plot diagnostics because aesthetic elements like marker size,

marker color, and auxiliary lines impact the presentation of information. There are computer vision

models trained to handle images captured in various scenarios. For example, the VGG16 model

(Simonyan and Zisserman 2014) can classify objects in images taken under different lighting conditions

80

Advances in Artificial Intelligence for Data Visualization

and is robust to image rotation. However, data plots are a special type of image as the plotting style

can always be consistent if controlled properly. Therefore, we assume computer vision models built

for reading residual plots will be trained with residual plots of a specific aesthetic style. In this

case, it is best to predict plots using the same style for optimal performance. The plotting method

plot_resid() handles this aspect.

plot_resid() accepts a data.frame containing fitted values and residuals, along with several

customization options: a ggplot theme, an alpha value to control the transparency of data points,

a size value to set the size of data points, and a stroke value to define the thickness of data point

edges. Additionally, it includes four Boolean arguments to toggle the display of axes, legends, grid

lines, and a horizontal red line. By default, it replicates the style we used to generate the training

samples for the computer vision models described in Chapter 3. In brief, the residual plot omits axis

text and ticks, titles, and background grid lines, featuring only a red line at y = 0. It retains only the

necessary components of a residual plot. If the computer vision model is trained with a different but

consistent aesthetic style, plot_resid() should be overridden.

The method returns a ggplot object (Figure 4.4), which can be saved as a PNG file in the following

module. If no data is provided, the method will use get_fitted_and_resid() to retrieve the fitted

values and residuals from the regression model stored in the checker.

checker$plot_resid()

Figure 4.4: Residual plot of the regression model stored in the checker.

To manually generate true residual plots, null plots, or bootstrapped residual plots, you can pass

the corresponding data.frame produced by the get_fitted_and_resid(), null_method(), and

81

Advances in Artificial Intelligence for Data Visualization

boot_method() methods to the plot_resid() method, respectively.

4.2.4.8 Plot Saving

Another key aspect of a standardized residual plot is its resolution. In Chapter 3, we used an image

format of 420 pixels in height and 525 pixels in width. This resolution was chosen because the

original set, consisting of 20 residual plots arranged in a four by five grid, was represented by an

image of 2100 by 2100 pixels. The save_plot() method accepts a ggplot object as input and saves

it as a PNG file to the location specified by the path argument. If no path is provided, the PNG file is

saved to a temporary file.

checker$plot_resid() |>

checker$save_plot()

[1] "/var/folders/61/bv7_1qzs20x6fjb2rsv7513r0000gn/T//RtmpUDxgpp/file128ee3ff7d1b3.png"

4.2.4.9 Image Reading and Resizing

When training computer vision models, it is common to test various input sizes for the same architec-

ture to identify the optimal setup. This involves preparing the original training image at a higher

resolution than required and then resizing it to match the input size during training. The autovi

package includes a class, KERAS_WRAPPER, to simplify this process. This Keras wrapper class features

a method called image_to_array(), which reads an image as a PIL image using the pillow Python

package, resizes it to the target input size required by the Keras model, and converts it to a Numpy

array.

To construct a KERAS_WRAPPER object, you need to provide the Keras model as the main argument.

However, users generally do not need to interact with this class directly, as the autovi checker

automatically invokes its methods when performing VSS predictions. The image_to_array()

method takes the path to the image file, the target height, and the target width as inputs and

returns a Numpy array. If not specified, the target height and target width will be retrieved from the

input layer of the Keras model by the get_input_height() and get_input_width() method of

KERAS_WRAPPER.

The following code example demonstrate the way to manually generate the true residual plot, save it

as PNG file, and load it back as Numpy array.

wrapper <- keras_wrapper(keras_model = checker$keras_model)

input_array <- checker$plot_resid() |>

checker$save_plot() |>

wrapper$image_to_array()

82

Advances in Artificial Intelligence for Data Visualization

input_array$shape

(1, 32, 32, 3)

4.2.4.10 Visual Signal Strength (VSS) Prediction

VSS, as discussed in Chapter 3, estimates the distance between the input residual plot and a the-

oretically good residual plot. It can be defined in various ways, much like different methods for

measuring the distance between two points. This will not impact the autovi infrastructure as long

as the provided Keras model can predict the intended measure.

There are several ways to obtain VSS from the checker, with the most direct being the vss() method.

By default, this method predicts the VSS for the true residual plot. If a ggplot or a data.frame,

such as null residuals generated by the null_method(), is explicitly provided, the method will use

that input to predict VSS accordingly. Note that if a ggplot is provided, auxiliary inputs must be

supplied manually via the auxiliary argument, as we assume that auxiliary variables can not be

computed directly from a ggplot.

Another way to obtain VSS is by calling the check() method. This comprehensive method perform

extensive diagnostics on the true residual plot and store the VSS in the check_result field of the

checker. Additionally, for obtaining VSS for null residual plots and bootstrapped residual plots, there

are two specialized methods, null_vss() and boot_vss(), designed for this purpose respectively.

Calling the vss() method without arguments will predict the VSS for the true residual plot and

return the result as a single-element tibble.

checker$vss()

A tibble: 1 x 1

vss

<dbl>

1 3.16

Providing a data.frame of null residuals or a null residual plot yields the same VSS.

null_resid <- checker$null_method()

checker$vss(null_resid)

A tibble: 1 x 1

vss

<dbl>

83

Advances in Artificial Intelligence for Data Visualization

1 1.02

null_resid |>

checker$plot_resid() |>

checker$vss()

A tibble: 1 x 1

vss

<dbl>

1 1.02

The null_vss() helper method primarily takes the number of null plots as input. If the user wants to

use a ad hoc null simulation scheme, it can be provided via the null_method argument. Intermediate

results, including null residuals and null plots, can be returned by enabling keep_null_data and

keep_null_plot. The VSS, along with null residuals and null plots, will be stored in a tibble

with three columns. The following code example demonstrates how to predict the VSS for five null

residual plots while keeping the intermediate results.

checker$null_vss(5L,

keep_null_data = TRUE,

keep_null_plot = TRUE)

A tibble: 5 x 3

vss data plot

<dbl> <list> <list>

1 1.35 <tibble [50 x 2]> <gg>

2 0.629 <tibble [50 x 2]> <gg>

3 1.77 <tibble [50 x 2]> <gg>

4 1.91 <tibble [50 x 2]> <gg>

5 1.71 <tibble [50 x 2]> <gg>

The boot_vss() helper method is similar to null_vss(), with some differences in argument names.

The following code example demonstrates how to predict the VSS for five bootstrapped residual plots

while keeping the intermediate results.

checker$boot_vss(5L,

keep_boot_data = TRUE,

keep_boot_plot = TRUE)

84

Advances in Artificial Intelligence for Data Visualization

A tibble: 5 x 3

vss data plot

<dbl> <list> <list>

1 1.26 <tibble [50 x 2]> <gg>

2 3.35 <tibble [50 x 2]> <gg>

3 3.16 <tibble [50 x 2]> <gg>

4 2.87 <tibble [50 x 2]> <gg>

5 2.54 <tibble [50 x 2]> <gg>

4.2.4.11 p-value Computation

Once we have obtained the VSS from both the true residual plot and the null plots, we can compute

the p-value. This p-value represents the ratio of plots with VSS greater than or equal to that of the

true residual plot. We can perform this calculation using the check() method. The main inputs

for this method are the number of null plots and the number of bootstrapped plots to generate. If

you need to access intermediate residuals and plots, you can enable the keep_data and keep_plot

options. The method stores the final result in the check_result field of the object. To obtain the

p-value using the check() method, you can use the following code.

checker$check(boot_draws = 100L, null_draws = 100L)

checker$check_result$p_value

[1] 0.01980198

You can also check the p-value by printing the checker, which includes it in the summary report.

checker

-- <AUTO_VI object>

Status:

- Fitted model: lm

- Keras model: UNKNOWN

- Output node index: 1

- Result:

- Observed visual signal strength: 3.162 (p-value = 0.0198)

- Null visual signal strength: [100 draws]

- Mean: 1.42

- Quantiles:

85

Advances in Artificial Intelligence for Data Visualization

25% 50% 75% 80% 90% 95% 99%

0.9296 1.3095 1.7277 1.7810 2.2497 2.5835 3.1570

- Bootstrapped visual signal strength: [100 draws]

- Mean: 2.623 (p-value = 0.05941)

- Quantiles:

25% 50% 75% 80% 90% 95% 99%

2.144 2.770 3.160 3.256 3.444 3.589 3.705

- Likelihood ratio: 0.5334 (boot) / 0.02943 (null) = 18.12

4.2.5 Summary Plots

After executing the check() method, autovi offers two visualization options for the assessment

result through the summary_plot() method, including the density plot and the rank plot. We have

already discussed and interpreted the density plot in Section 4.2.3. Here, we would like to highlight

the flexibility in choosing which elements to display in the density plot as shown in Figure 4.5.

For instance, you can omit the bootstrapped distribution by setting boot_dist to NULL. Similarly,

you can hide the null distribution (null_dist), the p-value (p_value), or the likelihood ratio

(likelihood_ratio) as needed. The following example demonstrates how to create a summary

plot without the results from bootstrapped plots.

checker$summary_plot(boot_dist = NULL,

likelihood_ratio = NULL)

86

Advances in Artificial Intelligence for Data Visualization

0.0

0.2

0.4

0.6

1 2 3
Visual signal strength

D
en

si
ty

Null

linetype

95% quantile of the null distribution

Observed vss

P−value = 0.0198

Summary of check result (density)

Figure 4.5: Density plot of the VSS for null plots.

This customization allows you to focus on specific aspects of the assessment, tailoring the visualization

to your analytical needs.

The rank plot (Figure 4.6), creating by setting type to “rank”, is a bar plot where the x-axis represents

the rank and the y-axis shows the VSS. The bar that is coloured in red corresponding to the VSS of

the true residual plot. By examining the rank plot, you can intuitively understand how the observed

VSS compares to the null VSSs and identify any outliers in the null distribution.

checker$summary_plot(type = "rank")

87

Advances in Artificial Intelligence for Data Visualization

0

1

2

3

0 25 50 75 100
Rank

V
is

ua
l s

ig
na

l s
tr

en
gt

h

observed

P−value = 0.0198

Summary of check result (rank)

Figure 4.6: Density plot of the VSS for null plots.

4.2.6 Feature Extraction

In addition to predicting VSS and computing p-values, autovi offers methods to extract features

from any layer of the Keras model. To see which layers are available in the current Keras model, you

can use the list_layer_name() method from the KERAS_WRAPPER class.

The following code example lists the layer names of the currently used Keras model:

wrapper <- keras_wrapper(checker$keras_model)

wrapper$list_layer_name()

[1] "input_1" "tf.__operators__.getitem"

[3] "tf.nn.bias_add" "grey_scale"

[5] "block1_conv1" "batch_normalization"

[7] "activation" "block1_conv2"

[9] "batch_normalization_1" "activation_1"

[11] "block1_pool" "dropout"

[13] "block2_conv1" "batch_normalization_2"

[15] "activation_2" "block2_conv2"

[17] "batch_normalization_3" "activation_3"

[19] "block2_pool" "dropout_1"

88

Advances in Artificial Intelligence for Data Visualization

[21] "block3_conv1" "batch_normalization_4"

[23] "activation_4" "block3_conv2"

[25] "batch_normalization_5" "activation_5"

[27] "block3_conv3" "batch_normalization_6"

[29] "activation_6" "block3_pool"

[31] "dropout_2" "block4_conv1"

[33] "batch_normalization_7" "activation_7"

[35] "block4_conv2" "batch_normalization_8"

[37] "activation_8" "block4_conv3"

[39] "batch_normalization_9" "activation_9"

[41] "block4_pool" "dropout_3"

[43] "block5_conv1" "batch_normalization_10"

[45] "activation_10" "block5_conv2"

[47] "batch_normalization_11" "activation_11"

[49] "block5_conv3" "batch_normalization_12"

[51] "activation_12" "block5_pool"

[53] "dropout_4" "global_max_pooling2d"

[55] "additional_input" "concatenate"

[57] "dense" "dropout_5"

[59] "activation_13" "dense_1"

Among these layers, the “global_max_pooling2d” layer is a 2D global max pooling layer that outputs

the results from the last convolutional blocks. As Simonyan and Zisserman (2014) noted, all preceding

convolutional blocks can be viewed as a large feature extractor. Consequently, the output from this

layer provides features that can be utilized for various purposes, such as performing transfer learning.

To obtain the features, provide the layer name using the extract_feature_from_layer argument

in the predict() method. This will return a tibble with the VSS and all features extracted from

that layer. Each row corresponds to one plot. The features will be flattened into 2D and named with

the prefix “f_” followed by a number from one to the total number of features.

checker$plot_resid() |>

checker$save_plot() |>

wrapper$image_to_array() |>

wrapper$predict(auxiliary = checker$auxiliary(),

extract_feature_from_layer = "global_max_pooling2d")

89

Advances in Artificial Intelligence for Data Visualization

A tibble: 1 x 257

vss f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9 f_10 f_11

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 3.16 0.151 0 0 0 0 0.0203 0.109 0.0203 0 0.0834 0

i 245 more variables: f_12 <dbl>, f_13 <dbl>, f_14 <dbl>, f_15 <dbl>,

f_16 <dbl>, f_17 <dbl>, f_18 <dbl>, f_19 <dbl>, f_20 <dbl>, f_21 <dbl>,

f_22 <dbl>, f_23 <dbl>, f_24 <dbl>, f_25 <dbl>, f_26 <dbl>, f_27 <dbl>,

f_28 <dbl>, f_29 <dbl>, f_30 <dbl>, f_31 <dbl>, f_32 <dbl>, f_33 <dbl>,

f_34 <dbl>, f_35 <dbl>, f_36 <dbl>, f_37 <dbl>, f_38 <dbl>, f_39 <dbl>,

f_40 <dbl>, f_41 <dbl>, f_42 <dbl>, f_43 <dbl>, f_44 <dbl>, f_45 <dbl>,

f_46 <dbl>, f_47 <dbl>, f_48 <dbl>, f_49 <dbl>, f_50 <dbl>, f_51 <dbl>, ...

Alternatively, the AUTO_VI class provides a way to extract features using the vss() method. This

method is essentially a high-level wrapper around the predict() method of KERAS_WRAPPER, but it

offers a more straightforward interface and better default arguments.

The results from the previous code example can be replicated with a single line of code as shown

below.

checker$vss(extract_feature_from_layer = "global_max_pooling2d")

A tibble: 1 x 257

vss f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9 f_10 f_11

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 3.16 0.151 0 0 0 0 0.0203 0.109 0.0203 0 0.0834 0

i 245 more variables: f_12 <dbl>, f_13 <dbl>, f_14 <dbl>, f_15 <dbl>,

f_16 <dbl>, f_17 <dbl>, f_18 <dbl>, f_19 <dbl>, f_20 <dbl>, f_21 <dbl>,

f_22 <dbl>, f_23 <dbl>, f_24 <dbl>, f_25 <dbl>, f_26 <dbl>, f_27 <dbl>,

f_28 <dbl>, f_29 <dbl>, f_30 <dbl>, f_31 <dbl>, f_32 <dbl>, f_33 <dbl>,

f_34 <dbl>, f_35 <dbl>, f_36 <dbl>, f_37 <dbl>, f_38 <dbl>, f_39 <dbl>,

f_40 <dbl>, f_41 <dbl>, f_42 <dbl>, f_43 <dbl>, f_44 <dbl>, f_45 <dbl>,

f_46 <dbl>, f_47 <dbl>, f_48 <dbl>, f_49 <dbl>, f_50 <dbl>, f_51 <dbl>, ...

The argument extract_feature_from_layer is also available in other functions that build on the

vss() method, including null_vss(), boot_vss(), and check().

90

Advances in Artificial Intelligence for Data Visualization

4.2.7 Trained Model Hosting

The trained computer vision models described in Chapter 3 are hosted on a GitHub repository at

https://github.com/TengMCing/autovi_data. Currently, there are six models available. You can view

them by calling list_keras_model(), which will return a tibble showing the input shape and a

description of each model.

A tibble: 6 x 11

model_name path volume_path volume_size npz_path npz_py input_height

<chr> <chr> <chr> <int> <chr> <chr> <int>

1 vss_32 keras_model/~ keras_mode~ 4 keras_m~ keras~ 32

2 vss_64 keras_model/~ keras_mode~ 1 keras_m~ keras~ 64

3 vss_128 keras_model/~ keras_mode~ 8 keras_m~ keras~ 128

4 vss_phn_32 keras_model/~ keras_mode~ 2 keras_m~ keras~ 32

5 vss_phn_64 keras_model/~ keras_mode~ 8 keras_m~ keras~ 64

6 vss_phn_128 keras_model/~ keras_mode~ 8 keras_m~ keras~ 128

i 4 more variables: input_width <int>, input_channels <int>,

auxiliary_input_size <int>, description <chr>

The get_keras_model() function can be used to download a model to a temporary directory and

load it into memory using TensorFlow. It requires only the model name, which is the value in the

first column of the tibble returned by list_keras_model().

4.3 Web interface: autovi.web
The web interface package, called autovi.web, builds on autovi, and makes it easier for users

easier to do automated residual plot assessment. It eliminates software installation issues, so users

no longer need to struggle with managing Python environments or installing and maintaining the

correct versions of R libraries. The interface is cross-platform, accessible on different devices and

operating systems, and for users without R programming knowledge. The additional benefit is that

updates can be controlled centrally so that users will always have the latest features.

The web interface autovi.web is available at autoviweb.netlify.app. The implementation discussed

in this chapter is based on autovi.web version 0.1.0.

4.3.1 Implementation

The package autovi.web is built using the shiny (Chang et al. 2022) and shinydashboard

(Chang and Borges Ribeiro 2021) R packages. Hosted on the shinyapps.io domain, the application

is accessible through any modern web browser. The R packages htmltools (Cheng et al. 2024)

91

https://github.com/TengMCing/autovi_data
autoviweb.netlify.app
https://www.shinyapps.io

Advances in Artificial Intelligence for Data Visualization

and shinycssloaders (Sali and Attali 2020) are used to render markdown documentation in shiny

application, and for loading animations for shiny widgets, respectively.

Determining the best way to implement the interface was difficult. In our initial planning for

autovi.web, we considered implementing the entire web application using the webr framework

(Moon 2020), which would have allowed the entire application to run directly in the user’s browser.

However, this approach was not feasible at the time of writing this chapter. The reason is that one of

the R packages autovi depends on the R package splancs (Rowlingson and Diggle 2023), which

uses compiled Fortran code. A working Emscripten (Zakai 2011) version of this package, which

would be required for webr, was not available.

We also explored the possibility of implementing the web interface using frameworks built on other

languages, such as Python. However, server hosting domains that natively support Python servers

typically do not have the latest version of R installed. Additionally, calling R from Python is typically

done using the rpy2 Python library (Gautier 2024), but this approach can be awkward when dealing

with language syntax related to non-standard evaluation. Another option we considered was renting a

server where we could have full control, such as those provided by cloud platforms like Google Cloud

Platform (GCP) or Amazon Web Services (AWS). However, correctly setting up the server and ensuring

a secure deployment requires significant expertise. Ultimately, the most practical solution was to use

the shiny and shinydashboard frameworks, which are well-established in the R community and

offer a solid foundation for web application development.

The server-side configuration of autovi.web is carefully designed to support its functionality. Most

required Python libraries, including pillow and NumPy, are pre-installed on the server. These libraries

are integrated into the Shiny application using the reticulate package, which provides an interface

between R and Python.

Due to the resource allocation policy of shinyapps.io, the server enters a sleep mode during periods

of inactivity, resulting in the clearing of the local Python virtual environment. Consequently, when

the application “wakes up” for a new user session, these libraries need to be reinstalled. While this

ensures a clean environment for each session, it may lead to slightly longer loading times for the first

user after a period of inactivity.

In contrast to autovi, autovi.web does not use the native Python version of TensorFlow. Instead,

it leverages TensorFlow.js, a JavaScript library that allows the execution of machine learning

models directly in the browser. This choice enables native browser execution, enhancing compatibility

across different user environments, and shifts the computational load from the server to the client-

92

Advances in Artificial Intelligence for Data Visualization

side. TensorFlow.js also offers better scalability and performance, especially when dealing with

resource-intensive computer vision models on shinyapps.io.

While autovi requires downloading the pre-trained computer vision models from GitHub, these

models in “.keras” file format are incompatible with TensorFlow.js. Therefore, we extract and

store the model weights in JSON files and include them as extra resources in the Shiny application.

When the application initializes, TensorFlow.js rebuilds the computer vision model using these

pre-stored weights.

To allow communication between TensorFlow.js and other components of the Shiny application,

the shinyjs R package is used. This package allows calling custom JavaScript code within the Shiny

framework. The specialized JavaScript code for initializing TensorFlow.js and calling Tensor-

Flow.js for VSS prediction is deployed alongside the Shiny application as additional resources.

4.3.2 Design

Figure 4.7: Overview of the autovi.web graphical user interface (GUI). This default view may change
based on user interactions. Region 1 is the sidebar menu, containing the residual assessment
tab and the information tab. Region 2 is the data upload panel, where users can provide
a CSV file and specify the type of data it contains. Region 3 includes dropdown menus for
selecting the columns to be analyzed, a slider to control the number of bootstrapping samples,
and a numeric input box for setting the simulation seed. Region 4 displays the initialization
status and offers a button to start the analysis. Region 5 is empty in the default view but
will be populated with results once the analysis is started.

While the R package autovi aims to provide tools that can be extended to broader visual inference

applications, autovi.web is only focus on providing a straightforward and clean user interface. An

93

Advances in Artificial Intelligence for Data Visualization

overview of the graphical user interface of autovi.web is provided in Figure 4.7. This is the default

view of the web application, and there are five regions that user can mainly interact with. Region

1 of Figure 4.7 is a sidebar menu which can switch between the analysis page and the information

page. The analysis page is the focus of this section.

Region 2 of Figure 4.7 is a panel for data uploading and CSV type selection. Clicking the “upload

CSV” button opens a window where the user can select a file from their local system. The data

status displayed above the button provides information about the number of rows and columns in

the current dataset. Additionally, there are two example datasets available beneath the “upload

CSV” button: one is a lineup example using a CSV file with three columns, and the other is a single

plot example using a CSV file with two columns. More details about these example datasets are be

discussed in Section 4.3.3.

While the autovi package typically expects a fitted regression model object provided by the user,

this approach is impractical for a web interface. Saving the R model object to the filesystem involves

extra steps and requires users to have specific knowledge, which does not align with the goal of

the web application. Moreover, the regression model object may contain sensitive, non-shareable

data, making it unsuitable for uploading. Additionally, model objects are often unnecessarily large,

containing extra information not needed for residual diagnostics. In contrast, a CSV file is easier to

generate using various software programs, not just R. CSV files are widely accepted and can be easily

viewed and modified using common desktop applications like Excel. They are generally less sensitive

than raw data, as they exclude most information about the predictors.

The web application is designed to assess either a single residual plot or a lineup of residual plots.

Therefore, it accepts only two types of CSV files: one with at least two columns representing the fitted

values and residuals of a single residual plot, and another with at least three columns, where the

additional column serves as the label or identifier for a lineup of multiple residual plots. For a single

residual plot, 19 null plots are generated by simulating normal random draws from a distribution

with the same variance as the original residual plot, and comparisons are made with the original

residual plot. For a lineup, comparisons are made among the plots within the lineup. After uploading

the CSV file, the user must select the correct format to ensure the web interface interprets the data

correctly.

Region 3 of Figure 4.7 is a panel for column selection and simulation settings. As shown in Figure 4.7,

if the CSV type is set to a single residual plot, there will be two dropdown menus for specifying the

columns for fitted values and residuals, respectively. The default variable names for these columns

are .fitted and .resid. After uploading the CSV file, the content of these dropdown menus will

94

Advances in Artificial Intelligence for Data Visualization

Figure 4.8: The panels for selecting target columns and simulation settings are updated when a different
CSV type is selected in the left panel. Compared to Figure 4.7, where the CSV type is a single
residual plot, choosing a CSV type that includes a lineup of multiple residual plots adds a
dropdown menu for specifying a column for the residual plot identifier. Additionally, an
optional dropdown menu for specifying the true residual plot identifier will appear under
the simulation settings.

be updated to reflect the existing columns in the dataset. As displayed in Figure 4.8, for the CSV type

that is a lineup of multiple residual plots, an additional dropdown menu will appear for specifying

the column of residual plot labels. The default variable name for this column is .sample. If this

variable name does not exist in the dataset, the dropdown menu will remain empty, allowing the user

to specify the correct column. The number of levels for each option in this dropdown menu will be

displayed to help avoid the selection of a variable with too many levels, which could significantly

slow down the application due to extensive computation.

Under the simulation settings, there is a slider for specifying the number of bootstrapped samples

needed for the assessment. A higher value on this slider will result in a more accurate bootstrap

distribution estimation, though it will require more computation time. The simulation seed can

be set in a numeric input box below the slider to control the reproducibility of the assessment. By

default, a random seed is set each time the web page is refreshed. When the CSV type is a lineup of

multiple residual plots, an optional dropdown menu will appear next to the simulation seed input

box, allowing the user to specify an identifier for the true residual plot. If no label is provided for

the true residual plot, the assessment will only estimate the VSS for each residual plot in the lineup,

without providing a p-value, as it cannot be computed. Consequently, some result panels may be

missing due to insufficient information. This option is useful when the lineup consists solely of null

plots or if the user simply wants to obtain the VSS for multiple residual plots.

95

Advances in Artificial Intelligence for Data Visualization

Region 4 of Figure 4.7 is the panel for triggering the assessment. It contains a large play button to

start the assessment. Above the play button, a text message displays the status of TensorFlow.js,

allowing users to monitor whether the JavaScript library and Keras model have been loaded correctly.

The play button will remain disabled until both the data status in Region 1 and the TensorFlow.js

status in Region 4 indicate that everything is ready, with both showing a green status.

Once the play button is clicked, region 5 of Figure 4.7 will be populated with panels displaying the

assessment results. Generally, there will be four result panels, as shown in Figure 4.9 and Figure 4.10.

Figure 4.9: The first two panels of results from the automated residual assessment are shown. The
application provides four results panels in total, and these screenshots display the first two.
In region 1, there is an interactive table detailing the VSS, with a summary of the analysis
provided in the paragraph below. Region 2 displays a lineup of residual plots.

Region 6 of Figure 4.9 contains an interactive table created with the R package DT (Xie et al. 2024),

which provides the VSS. This table includes four columns: .sample, vss, rank, and null. The

.sample column shows the residual plot labels. For a CSV type that is a lineup, these labels are taken

from an identifier column in the dataset specified by the user. In the case of the CSV type is a single

residual plot, labels are automatically generated from 1 to 20, with the true residual plot receiving a

randomly assigned label. The vss column displays the VSS for each residual plot, rounded to three

decimal places. The rank column indicates the ranking of each residual plot based on VSS. The null

column reveals whether the plot is a null plot. For the CSV type that is a single residual plot, only the

true residual plot will have “false” in this column, while all other plots will be marked “true.” For the

CSV type that is a lineup, if the true residual plot identifier has not been provided, this column will

96

Advances in Artificial Intelligence for Data Visualization

Figure 4.10: The last two panels of results from the automated residual assessment are shown. The
application provides four results panels in total, and these screenshots display the final
two. Region 1 presents a density plot comparing the bootstrapped VSS with the null VSS.
Region 2 includes an attention map of the true residual plot.

Figure 4.11: The attention map is hidden if the assessment indicates a p-value greater than 0.05. A
button is available to toggle the display of the attention map.

show “NA” to represent missing values. If the identifier is provided by user, the column behaves as if

the CSV type is a single residual plot.

The DT table provides several interactive features. Users can download the table in four formats,

including text, CSV, Excel, and PDF, using the buttons located above the table. Additionally, the table

is searchable via the text input field also positioned above it. Below the table, a text message displays

the p-value of the assessment for the true residual plot and summarizes the number of null plots

97

Advances in Artificial Intelligence for Data Visualization

with VSS greater than that of the true residual plot. This helps the user determine whether the true

residual plot shows visual patterns that suggest model violations.

Region 7 of Figure 4.9 provides a lineup of plots corresponding to each .sample value from the table

in Region 6. Due to space limitations, a maximum of 20 residual plots will be displayed, ensuring

that the true residual plot, if known, will be included in the lineup. The plots are generated using

ggplot2, the same as in autovi. Users can perform a visual test with this lineup to check if the true

residual plot is distinguishable from the other plots, helping to determine the significance of model

violations.

Region 8 of Figure 4.10 displays the density plot for bootstrapped VSS and null VSS. The densities are

shown in distinct colors that are friendly for colorblind users. A solid vertical line marks the VSS of the

true residual plot, while rug lines at the bottom of the plot provide a clearer view of individual cases.

Below the plot, a text message indicates the number and percentage of bootstrapped residual plots

that would be rejected by the visual test when compared to the null plots. Note that the bootstrapped

residual plots in this application are generated differently from autovi. Since we do not have the R

model object, we can not refit the regression model with bootstrapped data. Instead, we bootstrap

the residuals of the true residual plot directly to obtain bootstrapped residual plots. As as result, this

panel will disappear when the true residual plot is unknown.

Region 9 of Figure 4.10 displays an attention map for the true residual plot, generated by computing

the gradient of the Keras model’s output with respect to the greyscale input of the plot. The attention

map helps to understand how the Keras model predicts VSS and which areas it is focusing on. We

use a greyscale input because it is easier to generate a clear attention map in this format, and it

usually conveys all the essential information, as most of the important details of the plot are drawn

in black. If the p-value of the true residual plot is greater than 0.05, checking the attention map is

not necessary. However, to provide users with the option to review it if they wish, a button will be

available, as shown in Figure 4.11. This button allows users to toggle the display of the attention

map.

4.3.3 Workflow

The workflow of autovi.web is designed to be straightforward, with numbered steps displayed in

each panel shown in Figure 4.7. There are two example datasets provided by the web application,

as mentioned in Section 4.3.2. The single residual plot example uses the dino dataset from the R

package datasauRus (Davies et al. 2022). The lineup example uses residuals from a simulated

regression model that has a non-linearity issue. We will walk through the lineup example to further

demonstrate the workflow of the web application.

98

Advances in Artificial Intelligence for Data Visualization

As shown in Figure 4.12, to use the lineup example data, click the “Use Lineup Example” button.

The data status will then update to show the number of rows and columns in the dataset, and the

CSV type will automatically be selected to the correct option. Since the example dataset follows the

variable naming conventions assumed by the web application, the columns for fitted values, residuals,

and labels of residual plots are set automatically (Figure 4.13). If the user is working with a custom

dataset, these options must be set accordingly. Regardless of the dataset, the user must manually

select the label for the true residual plot, as the web application allows assessments without this label.

The next step is to click the play button to start the assessment.

Results are provided in multiple panels as displayed in Figure 4.14, Figure 4.15, Figure 4.16 and

Figure 4.17. In Figure 4.14, the first row of the table is the most crucial to check, as it provides the

VSS and the rank of the true residual plot among the other plots. The summary text beneath the table

provides the p-value, which can be used for quick decision-making. In Figure 4.15, the lineup is for

manual inspection, and the user should see if the true residual plot is visually distinguishable from

the other plots, to confirm if the model violation is serious. The density plot in Figure 4.16 offers

a more robust result, allowing the user to compare the distribution of bootstrapped VSS with the

distribution of null VSS. Finally, the grayscale attention map shown in Figure 4.17 can be used to

check if the target visual features, like the non-linearity present in the lineup example, are captured

by the computer vision model, ensuring the quality of the assessment.

4.4 Conclusions
This chapter presents new regression diagnostics software, the R package autovi and its accompa-

nying web interface package, autovi.web. It addresses a critical gap in the current landscape of

statistical software. While regression tools are widely available, effective and efficient diagnostic

methods have lagged behind, particularly in the field of residual plot interpretation.

The autovi R package, introduced in this chapter, automates the assessment of residual plots by

incorporating a computer vision model, eliminating the need for time-consuming and potentially

inconsistent human interpretation. This automation improves the efficiency of the diagnostic process

and promotes consistency in model evaluation across different users and studies.

The development of the accompanying Shiny app, autovi.web, expands access to these advanced

diagnostic tools, by providing a user-friendly interface. It makes automated residual plot assessment

accessible to a broader audience, including those who may not have extensive programming experience.

This web-based solution effectively addresses the potential barriers to adoption, such as complex

dependencies and installation requirements, that are often associated with advanced statistical

99

Advances in Artificial Intelligence for Data Visualization

Figure 4.12: To begin the workflow for autovi using the lineup example dataset, the user clicks the
“Use Lineup Example” button to load the example dataset, during which the data status
and CSV type will be automatically updated.

software.

The combination of autovi and autovi.web offers a comprehensive solution to the challenges of

residual plot interpretation in regression analysis. These tools have the potential to significantly

improve the quality and consistency of model diagnostics across various fields, from academic research

to industry applications. By automating a critical aspect of model evaluation, they allow researchers

and analysts to focus more on interpreting results and refining models, rather than grappling with

the intricacies of plot assessment.

The framework established by autovi and autovi.web opens up exciting possibilities for further

research and development. Future work could explore the extension of these automated assessment

techniques to other types of diagnostic plots and statistical models, potentially revolutionizing how

we approach statistical inference using visual displays more broadly.

100

Advances in Artificial Intelligence for Data Visualization

Figure 4.13: After clicking the button in Figure 4.12, the target columns are selected automatically,
though the user must manually select the label for the true residual plot, as the web
application permits assessment without this label.

4.5 Availability
The web interface is housed at autoviweb.netlify.app.

The the current version of autovi can be installed from CRAN, and source code for both packages

are available at https://github.com/TengMCing/.

101

autoviweb.netlify.app
https://github.com/TengMCing/

Advances in Artificial Intelligence for Data Visualization

Figure 4.14: After finishing the required steps in Figure 4.12 and Figure 4.13, the user initiates the
assessment of the lineup example data by clicking the run button.

102

Advances in Artificial Intelligence for Data Visualization

Figure 4.15: The VSS of the true residual plot is displayed in the first row of the table, with a summary
text beneath the table providing the p-value to aid in decision-making.

103

Advances in Artificial Intelligence for Data Visualization

Figure 4.16: A lineup of residual plots allows for manual inspection.

104

Advances in Artificial Intelligence for Data Visualization

Figure 4.17: The density plot helps verify if the bootstrapped distribution differs from the null distribu-
tion.

105

Advances in Artificial Intelligence for Data Visualization

Figure 4.18: The attention map offers insights into whether the computer vision model has captured the
intended visual features of the true residual plot.

106

Chapter 5

Conclusion and future plans

The three pieces of work assembled in this thesis share a common theme of advancing regression

diagnostics, with a focus on improving the assessment of residual plots, challenging the limitations of

conventional methods, and developing innovative solutions to automate diagnostic processes.

5.1 Contributions
The primary contributions of this research are threefold. Firstly, we provide empirical evidence for

the effectiveness of the lineup protocol in diagnosing model fit issues through residual plots (Li et

al. 2024). Secondly, we develop computer vision model for automating the assessment of residual

plots, which addresses the scalability limitations of lineup protocol. Lastly, we share a user-focused R

package and Shiny app, making the automated diagnostic tools accessible to a broad range of analysts

and practitioners.

The aforementioned R package (and its dependency) is available on CRAN with the latest development

versions in the links below:

• autovi (https://github.com/TengMCing/autovi), and

• bandicoot (https://github.com/TengMCing/bandicoot).

The Shiny app for autovi is available at one of the mirror sites listed at https://autoviweb.netlify.app/

with the source code available at https://github.com/TengMCing/autovi_web.

Principles of transparency and reproducible research have guided the work with all materials related

to the thesis at https://github.com/TengMCing/PhD/Thesis. The thesis is written using Quarto

(Allaire et al. 2024) and is available online at https://patrick-li-thesis.netlify.app. The R packages

used throughout the thesis include tidyverse (Wickham et al. 2019), lmtest (Zeileis and Hothorn

2002), mpoly (Kahle 2013), ggmosaic (Jeppson et al. 2021), kableExtra (Zhu 2021), patchwork

107

https://github.com/TengMCing/autovi
https://github.com/TengMCing/bandicoot
https://autoviweb.netlify.app/
https://github.com/TengMCing/autovi_web
https://github.com/TengMCing/PhD/Thesis
https://patrick-li-thesis.netlify.app

Advances in Artificial Intelligence for Data Visualization

(Pedersen 2022), rcartocolor (Nowosad 2018), glue (Hester and Bryan 2022), ggpcp (Hofmann et

al. 2022), here (Müller 2020), magick (Ooms 2023), yardstick (Kuhn et al. 2024), reticulate

(Ushey et al. 2024) and knitr (Xie 2014).

5.2 Future work
There are several directions that this work can be developed. These include improving the accuracy

and effectiveness of residual plot assessments, exploring the use of alternative computer vision

models, extending the automated visual diagnostics to different plot types and statistical models, and

improving the front-end display and back-end computation for the web app.

The model in Chapter 4, trained on standard residual plots from linear regression, has certain

limitations. It was very difficult to arrive at a final model to share, with the main concern is that

the current version may still be too sensitive, leading to a decision that the model is misspecified

even when problems are minor. While the current implementation relies on the basic VGG16 model

(Simonyan and Zisserman 2014), developed a decade ago, performance could be enhanced by

exploring more advanced versions like ResNet50 (He et al. 2016) and DenseNet201 (Huang et al.

2017), as well as ensemble techniques. There is room to improve the accuracy and effectiveness of

residual plot assessments.

Residual plots from more complex models, such as hierarchical, temporal, or spatial regression, often

exhibit distinct visual patterns that the current approach might not fully capture. To better address

this, using scaled residual plots, with randomized quantile residuals (Dunn and Smyth 1996), offers

a more flexible approach for defining residuals across different regression models, though it may

alter the original visual pattern. Building a computer vision model on this foundation can provide a

stronger solution for assessing residual plots across a broader spectrum of regression models.

Visual diagnostics are foundational in Bayesian modelling to assess model fit, convergence, and

posterior distributions (see Gelman et al. (2013)). Some common visual diagnostics include trace

plots to assess convergence of Markov Chain Monte Carlo (MCMC) chains, density plots to visualize

posterior distributions, posterior predictive checks to assess model fit, and autocorrelation plots

to assess dependence between samples in MCMC chains. These visual diagnostics help Bayesian

modelers to evaluate the quality of their models and identify potential issues or areas for improvement.

Automating the reading of these plots can help improve MCMC convergence diagnostics, facilitate

model comparison and selection, and enhance uncertainty quantification.

The development of a more comprehensive suite of automated visual diagnostics for statistical models

can help to improve the quality of statistical analyses. Also important is the development of user-

108

Advances in Artificial Intelligence for Data Visualization

friendly interfaces for these diagnostics, such as web applications, to make them accessible to a wider

audience of researchers and practitioners. The web app developed in this thesis is a step in this

direction, but further work is needed to improve the user experience, add more features, and make

the app more robust and scalable. Future work could also explore the use of interactive visualizations

and dashboards to help users explore and interpret the results of automated visual diagnostics more

effectively.

109

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,

J., Devin, M., and others (2016), “Tensorflow: Large-scale machine learning on heterogeneous

distributed systems,” arXiv preprint arXiv:1603.04467.

Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., and Dervieux, C. (2024), “Quarto.” https://doi.org/

10.5281/zenodo.5960048.

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980), Regression diagnostics: Identifying influential data

and sources of collinearity, John Wiley & Sons.

Box, G. E. (1976), “Science and statistics,” Journal of the American Statistical Association, Taylor &

Francis, 71, 791–799.

Breusch, T. S., and Pagan, A. R. (1979), “A simple test for heteroscedasticity and random coefficient

variation,” Econometrica: Journal of the Econometric Society, JSTOR, 1287–1294.

Brunetti, A., Buongiorno, D., Trotta, G. F., and Bevilacqua, V. (2018), “Computer vision and deep

learning techniques for pedestrian detection and tracking: A survey,” Neurocomputing, Elsevier,

300, 17–33.

Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.-K., Swayne, D. F., and Wickham, H. (2009a),

“Statistical inference for exploratory data analysis and model diagnostics,” Philosophical Transac-

tions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society

Publishing, 367, 4361–4383.

Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.-K., Swayne, D. F., and Wickham, H. (2009b),

“Statistical inference for exploratory data analysis and model diagnostics,” Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 4361–4383.

https://doi.org/10.1098/rsta.2009.0120.

Chang, W., and Borges Ribeiro, B. (2021), Shinydashboard: Create dashboards with ’shiny’.

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A.,

and Borges, B. (2022), Shiny: Web application framework for r.

Chen, Y., Su, S., and Yang, H. (2020), “Convolutional neural network analysis of recurrence plots for

anomaly detection,” International Journal of Bifurcation and Chaos, World Scientific, 30, 2050002.

110

https://doi.org/10.5281/zenodo.5960048
https://doi.org/10.5281/zenodo.5960048
https://doi.org/10.1098/rsta.2009.0120
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shiny

Advances in Artificial Intelligence for Data Visualization

Cheng, J., Sievert, C., Schloerke, B., Chang, W., Xie, Y., and Allen, J. (2024), Htmltools: Tools for

HTML.

Chollet, F. (2021), Deep learning with python, Simon; Schuster.

Chollet, F., and others (2015), “Keras,” https://keras.io.

Chopra, S., Hadsell, R., and LeCun, Y. (2005), “Learning a similarity metric discriminatively, with

application to face verification,” in 2005 IEEE computer society conference on computer vision and

pattern recognition (CVPR’05), IEEE, pp. 539–546.

Chowdhury, N. R., Cook, D., Hofmann, H., and Majumder, M. (2018), “Measuring lineup difficulty by

matching distance metrics with subject choices in crowd-sourced data,” Journal of Computational

and Graphical Statistics, Taylor & Francis, 27, 132–145.

Chu, H., Liao, X., Dong, P., Chen, Z., Zhao, X., and Zou, J. (2019), “An automatic classification method

of well testing plot based on convolutional neural network (CNN),” Energies, MDPI, 12, 2846.

Clark, A., and others (2015), “Pillow (pil fork) documentation,” readthedocs.

Cleveland, W. S., and McGill, R. (1984), “Graphical perception: Theory, experimentation, and appli-

cation to the development of graphical methods,” Journal of the American Statistical Association,

Taylor & Francis, 79, 531–554.

Cook, R. D., and Weisberg, S. (1982), Residuals and influence in regression, New York: Chapman; Hall.

Cook, R. D., and Weisberg, S. (1999), Applied regression including computing and graphics, John Wiley

& Sons.

Davies, R., Locke, S., and D’Agostino McGowan, L. (2022), datasauRus: Datasets from the datasaurus

dozen.

Davison, A. C., and Hinkley, D. V. (1997), Bootstrap methods and their application, Cambridge university

press.

De Leeuw, J. R. (2015), “jsPsych: A JavaScript library for creating behavioral experiments in a web

browser,” Behavior Research Methods, Springer, 47, 1–12.

Draper, N. R., and Smith, H. (1998), Applied regression analysis, John Wiley & Sons.

Dunn, P. K., and Smyth, G. K. (1996), “Randomized quantile residuals,” Journal of Computational and

graphical statistics, Taylor & Francis, 5, 236–244.

Efron, B., and Tibshirani, R. J. (1994), An introduction to the bootstrap, Chapman; Hall/CRC.

Emami, S., and Suciu, V. P. (2012), “Facial recognition using OpenCV,” Journal of Mobile, Embedded

and Distributed Systems, 4, 38–43.

Farrar, T. J. (2020), Skedastic: Heteroskedasticity diagnostics for linear regression models, Bellville,

South Africa: University of the Western Cape.

Fieberg, J., Freeman, S., and Signer, J. (2024), “Using lineups to evaluate goodness of fit of animal

111

https://CRAN.R-project.org/package=htmltools
https://CRAN.R-project.org/package=htmltools
https://keras.io
https://CRAN.R-project.org/package=datasauRus
https://CRAN.R-project.org/package=datasauRus

Advances in Artificial Intelligence for Data Visualization

movement models,” Methods in Ecology and Evolution, Wiley Online Library.

Frisch, R., and Waugh, F. V. (1933), “Partial time regressions as compared with individual trends,”

Econometrica: Journal of the Econometric Society, JSTOR, 387–401.

Fukushima, K., and Miyake, S. (1982), “Neocognitron: A new algorithm for pattern recognition

tolerant of deformations and shifts in position,” Pattern recognition, Elsevier, 15, 455–469.

Gautier, L. (2024), Python interface to the r language (embedded r).

Gebhardt, A., Bivand, R., and Sinclair, D. (2023), Interp: Interpolation methods.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013), Bayesian

data analysis (3rd ed.), Chapman and Hall/CRC.

Goode, K., and Rey, K. (2019), ggResidpanel: Panels and interactive versions of diagnostic plots using

’ggplot2’.

Goodfellow, I., Bengio, Y., and Courville, A. (2016), Deep learning, MIT press.

Goscinski, W. J., McIntosh, P., Felzmann, U., Maksimenko, A., Hall, C. J., Gureyev, T., Thompson, D.,

Janke, A., Galloway, G., Killeen, N. E., and others (2014), “The multi-modal australian ScienceS

imaging and visualization environment (MASSIVE) high performance computing infrastructure:

Applications in neuroscience and neuroinformatics research,” Frontiers in Neuroinformatics, Fron-

tiers Media SA, 8, 30.

Grinberg, M. (2018), Flask web development: Developing web applications with python, " O’Reilly Media,

Inc.".

Hailesilassie, T. (2019), “Financial market prediction using recurrence plot and convolutional neural

network,” Preprints.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,

E., Taylor, J., Berg, S., Smith, N. J., and others (2020), “Array programming with NumPy,” Nature,

Nature Publishing Group UK London, 585, 357–362.

Harrison Jr, D., and Rubinfeld, D. L. (1978), “Hedonic housing prices and the demand for clean air,”

Journal of environmental economics and management, Elsevier, 5, 81–102.

Hartig, F. (2022), DHARMa: Residual diagnostics for hierarchical (multi-level /mixed) regression models.

Hastie, T. J. (2017), “Generalized additive models,” in Statistical models in s, Routledge, pp. 249–307.

Hatami, N., Gavet, Y., and Debayle, J. (2018a), “Classification of time-series images using deep

convolutional neural networks,” in Tenth international conference on machine vision (ICMV 2017),

eds. A. Verikas, P. Radeva, D. Nikolaev, and J. Zhou, International Society for Optics; Photonics;

SPIE, p. 106960Y. https://doi.org/10.1117/12.2309486.

Hatami, N., Gavet, Y., and Debayle, J. (2018b), “Classification of time-series images using deep

convolutional neural networks,” in Tenth international conference on machine vision (ICMV 2017),

112

https://pypi.org/project/rpy2/
https://CRAN.R-project.org/package=interp
https://CRAN.R-project.org/package=ggResidpanel
https://CRAN.R-project.org/package=ggResidpanel
https://CRAN.R-project.org/package=DHARMa
https://doi.org/10.1117/12.2309486

Advances in Artificial Intelligence for Data Visualization

SPIE, pp. 242–249.

He, K., Zhang, X., Ren, S., and Sun, J. (2016), “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Hebbali, A. (2024), Olsrr: Tools for building OLS regression models.

Hermite, M. (1864), Sur un nouveau développement en série des fonctions, Imprimerie de Gauthier-

Villars.

Hester, J., and Bryan, J. (2022), Glue: Interpreted string literals.

Hofmann, H., VanderPlas, S., and Ge, Y. (2022), Ggpcp: Parallel coordinate plots in the ’ggplot2’

framework.

Hofmann, H., Wickham, H., and Kafadar, K. (2017), “Value plots: Boxplots for large data,” Journal of

Computational and Graphical Statistics, Taylor & Francis, 26, 469–477.

Hornik, K. (2012), “The comprehensive r archive network,” Wiley interdisciplinary reviews: Computa-

tional statistics, Wiley Online Library, 4, 394–398.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017), “Densely connected convolu-

tional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 4700–4708.

Hyndman, R. J., and Fan, Y. (1996), “Sample quantiles in statistical packages,” The American Statisti-

cian, Taylor & Francis, 50, 361–365.

Jamshidian, M., Jennrich, R. I., and Liu, W. (2007), “A study of partial f tests for multiple linear

regression models,” Computational Statistics & Data Analysis, Elsevier, 51, 6269–6284.

Jarque, C. M., and Bera, A. K. (1980), “Efficient tests for normality, homoscedasticity and serial

independence of regression residuals,” Economics Letters, Elsevier, 6, 255–259.

Jeppson, H., Hofmann, H., and Cook, D. (2021), Ggmosaic: Mosaic plots in the ’ggplot2’ framework.

Johnson, P. E. (2022), Rockchalk: Regression estimation and presentation.

Kahle, D. (2013), “Mpoly: Multivariate polynomials in R,” The R Journal, 5, 162–170.

Kahneman, D. (2011), Thinking, fast and slow, macmillan.

Kimball, A. (1957), “Errors of the third kind in statistical consulting,” Journal of the American Statistical

Association, Taylor & Francis, 52, 133–142.

Kingma, D. P., and Ba, J. (2014), “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980.

Kirk, R. E. (1996), “Practical significance: A concept whose time has come,” Educational and psycho-

logical measurement, Sage Publications Sage CA: Thousand Oaks, CA, 56, 746–759.

Krishnan, G., and Hofmann, H. (2021), “Hierarchical decision ensembles-an inferential framework

for uncertain human-AI collaboration in forensic examinations,” arXiv preprint arXiv:2111.01131.

113

https://CRAN.R-project.org/package=olsrr
https://CRAN.R-project.org/package=glue
https://CRAN.R-project.org/package=ggpcp
https://CRAN.R-project.org/package=ggpcp
https://CRAN.R-project.org/package=ggmosaic
https://CRAN.R-project.org/package=rockchalk

Advances in Artificial Intelligence for Data Visualization

Kuhn, M., Vaughan, D., and Hvitfeldt, E. (2024), Yardstick: Tidy characterizations of model performance.

Kullback, S., and Leibler, R. A. (1951), “On information and sufficiency,” The Annals of Mathematical

Statistics, JSTOR, 22, 79–86.

Langsrud, Ø. (2005), “Rotation tests,” Statistics and computing, Springer, 15, 53–60.

Laplace, P.-S. (1820), Théorie analytique des probabilités, Courcier.

Lee, H., and Chen, Y.-P. P. (2015), “Image based computer aided diagnosis system for cancer detection,”

Expert Systems with Applications, Elsevier, 42, 5356–5365.

Li, W. (2024), “Bandicoot: Light-weight python-like object-oriented system.”

Li, W., Cook, D., Tanaka, E., and VanderPlas, S. (2024), “A plot is worth a thousand tests: Assessing

residual diagnostics with the lineup protocol,” Journal of Computational and Graphical Statistics,

Taylor & Francis, 1–19.

Long, J. A. (2022), Jtools: Analysis and presentation of social scientific data.

Loy, A. (2021), “Bringing visual inference to the classroom,” Journal of Statistics and Data Science

Education, Taylor & Francis, 29, 171–182.

Loy, A., Follett, L., and Hofmann, H. (2016), “Variations of q–q plots: The power of our eyes!” The

American Statistician, Taylor & Francis, 70, 202–214.

Loy, A., and Hofmann, H. (2013), “Diagnostic tools for hierarchical linear models,” Wiley Interdisci-

plinary Reviews: Computational Statistics, Wiley Online Library, 5, 48–61.

Loy, A., and Hofmann, H. (2014), “HLMdiag: A suite of diagnostics for hierarchical linear models in

r,” Journal of Statistical Software, 56, 1–28.

Loy, A., and Hofmann, H. (2015), “Are you normal? The problem of confounded residual structures

in hierarchical linear models,” Journal of Computational and Graphical Statistics, Taylor & Francis,

24, 1191–1209.

Majumder, M., Hofmann, H., and Cook, D. (2013b), “Validation of visual statistical inference, applied

to linear models,” Journal of the American Statistical Association, Taylor & Francis, 108, 942–956.

Majumder, M., Hofmann, H., and Cook, D. (2013a), “Validation of visual statistical inference, applied

to linear models,” Journal of the American Statistical Association, 108, 942–956. https://doi.org/

10.1080/01621459.2013.808157.

Mason, H., Lee, S., Laa, U., and Cook, D. (2022), Cassowaryr: Compute scagnostics on pairs of numeric

variables in a data set.

Montgomery, D. C., Peck, E. A., and Vining, G. G. (1982), Introduction to linear regression analysis,

John Wiley & Sons.

Moon, K.-W. (2020), Webr: Data and functions for web-based analysis.

Müller, K. (2020), Here: A simpler way to find your files.

114

https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=bandicoot
https://cran.r-project.org/package=jtools
https://doi.org/10.1080/01621459.2013.808157
https://doi.org/10.1080/01621459.2013.808157
https://CRAN.R-project.org/package=cassowary
https://CRAN.R-project.org/package=cassowary
https://CRAN.R-project.org/package=webr
https://CRAN.R-project.org/package=here

Advances in Artificial Intelligence for Data Visualization

Nair, V., and Hinton, G. E. (2010), “Rectified linear units improve restricted boltzmann machines,” in

Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814.

Nowosad, J. (2018), ’CARTOColors’ palettes.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., and others (2019), “Keras Tuner,”

https://github.com/keras-team/keras-tuner.

Ojeda, S. A. A., Solano, G. A., and Peramo, E. C. (2020), “Multivariate time series imaging for

short-term precipitation forecasting using convolutional neural networks,” in 2020 international

conference on artificial intelligence in information and communication (ICAIIC), IEEE, pp. 33–38.

Olvera Astivia, O. L., Gadermann, A., and Guhn, M. (2019), “The relationship between statistical

power and predictor distribution in multilevel logistic regression: A simulation-based approach,”

BMC Medical Research Methodology, BioMed Central, 19, 1–20.

Ooms, J. (2023), Magick: Advanced graphics and image-processing in r.

Palan, S., and Schitter, C. (2018), “Prolific. Ac—a subject pool for online experiments,” Journal of

Behavioral and Experimental Finance, Elsevier, 17, 22–27.

Pedersen, T. L. (2022), Patchwork: The composer of plots.

PythonAnywhere LLP (2023), “PythonAnywhere.”

R Core Team (2022), R: A language and environment for statistical computing, Vienna, Austria: R

Foundation for Statistical Computing.

Ramsey, J. B. (1969), “Tests for specification errors in classical linear least-squares regression analysis,”

Journal of the Royal Statistical Society: Series B (Methodological), Wiley Online Library, 31, 350–

371.

Rawat, W., and Wang, Z. (2017), “Deep convolutional neural networks for image classification: A

comprehensive review,” Neural computation, MIT Press, 29, 2352–2449.

Reinhart, A. (2024), Regressinator: Simulate and diagnose (generalized) linear models.

Rowlingson, B., and Diggle, P. (2023), Splancs: Spatial and space-time point pattern analysis.

Roy Chowdhury, N., Cook, D., Hofmann, H., Majumder, M., Lee, E.-K., and Toth, A. L. (2015), “Using

visual statistical inference to better understand random class separations in high dimension, low

sample size data,” Computational Statistics, Springer, 30, 293–316. https://doi.org/10.1007/

s00180-014-0534-x.

Sali, A., and Attali, D. (2020), Shinycssloaders: Add loading animations to a ’shiny’ output while it’s

recalculating.

Savvides, R., Henelius, A., Oikarinen, E., and Puolamäki, K. (2023), “Visual data exploration as a

statistical testing procedure: Within-view and between-view multiple comparisons,” IEEE Transac-

tions on Visualization and Computer Graphics, 29, 3937–3948. https://doi.org/10.1109/TVCG.

115

https://nowosad.github.io/rcartocolor
https://github.com/keras-team/keras-tuner
https://CRAN.R-project.org/package=magick
https://CRAN.R-project.org/package=patchwork
https://www.pythonanywhere.com
https://www.R-project.org/
https://CRAN.R-project.org/package=regressinator
https://CRAN.R-project.org/package=splancs
https://doi.org/10.1007/s00180-014-0534-x
https://doi.org/10.1007/s00180-014-0534-x
https://CRAN.R-project.org/package=shinycssloaders
https://CRAN.R-project.org/package=shinycssloaders
https://doi.org/10.1109/TVCG.2022.3175532
https://doi.org/10.1109/TVCG.2022.3175532

Advances in Artificial Intelligence for Data Visualization

2022.3175532.

Series, B. (2011), “Studio encoding parameters of digital television for standard 4: 3 and wide-screen

16: 9 aspect ratios,” International Telecommunication Union, Radiocommunication Sector.

Shapiro, S. S., and Wilk, M. B. (1965), “An analysis of variance test for normality (complete samples),”

Biometrika, JSTOR, 52, 591–611.

Silverman, B. W. (2018), Density estimation for statistics and data analysis, Routledge.

Silvey, S. D. (1959), “The lagrangian multiplier test,” The Annals of Mathematical Statistics, JSTOR,

30, 389–407.

Simonyan, K., and Zisserman, A. (2014), “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556.

Singh, K., Gupta, G., Vig, L., Shroff, G., and Agarwal, P. (2017), “Deep convolutional neural networks

for pairwise causality,” arXiv preprint arXiv:1701.00597.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014), “Dropout: A

simple way to prevent neural networks from overfitting,” The journal of machine learning research,

JMLR. org, 15, 1929–1958.

Tukey, J. W., and Tukey, P. A. (1985), “Computer graphics and exploratory data analysis: An intro-

duction,” in Proceedings of the sixth annual conference and exposition: Computer graphics, pp.

773–785.

Ushey, K., Allaire, J., and Tang, Y. (2024), Reticulate: Interface to ’python’.

VanderPlas, S., and Hofmann, H. (2016), “Spatial reasoning and data displays,” IEEE Transactions

on Visualization and Computer Graphics, 22, 459–468. https://doi.org/10.1109/TVCG.2015.

2469125.

VanderPlas, S., Röttger, C., Cook, D., and Hofmann, H. (2021), “Statistical significance calculations

for scenarios in visual inference,” Stat, Wiley Online Library, 10, e337.

Vo, N. N., and Hays, J. (2016), “Localizing and orienting street views using overhead imagery,” in

Computer vision–ECCV 2016: 14th european conference, amsterdam, the netherlands, october 11–14,

2016, proceedings, part i 14, Springer, pp. 494–509.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004), “Image quality assessment: From

error visibility to structural similarity,” IEEE transactions on image processing, IEEE, 13, 600–612.

Warton, D. I. (2023), “Global simulation envelopes for diagnostic plots in regression models,” The

American Statistician, 77, 425–431. https://doi.org/10.1080/00031305.2022.2139294.

White, H. (1980), “A heteroskedasticity-consistent covariance matrix estimator and a direct test for

heteroskedasticity,” Econometrica: Journal of the Econometric Society, JSTOR, 817–838.

Wickham, H. (2016), ggplot2: Elegant graphics for data analysis, Springer-Verlag New York.

116

https://doi.org/10.1109/TVCG.2022.3175532
https://doi.org/10.1109/TVCG.2022.3175532
https://CRAN.R-project.org/package=reticulate
https://doi.org/10.1109/TVCG.2015.2469125
https://doi.org/10.1109/TVCG.2015.2469125
https://doi.org/10.1080/00031305.2022.2139294
https://ggplot2.tidyverse.org

Advances in Artificial Intelligence for Data Visualization

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G.,

Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K.,

Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K.,

and Yutani, H. (2019), “Welcome to the tidyverse,” Journal of Open Source Software, 4, 1686.

https://doi.org/10.21105/joss.01686.

Wickham, H., Chowdhury, N. R., Cook, D., and Hofmann, H. (2020), Nullabor: Tools for graphical

inference.

Wickham, H., Cook, D., Hofmann, H., and Buja, A. (2010), “Graphical inference for infovis,” IEEE

Transactions on Visualization and Computer Graphics, 16, 973–979. https://doi.org/10.1109/

TVCG.2010.161.

Widen, H. M., Elsner, J. B., Pau, S., and Uejio, C. K. (2016), “Graphical inference in geographical

research,” Geographical Analysis, Wiley Online Library, 48, 115–131.

Wilkinson, L., Anand, A., and Grossman, R. (2005), “Graph-theoretic scagnostics,” in Information

visualization, IEEE symposium on, IEEE Computer Society, pp. 21–21.

Xie, Y. (2014), “Knitr: A comprehensive tool for reproducible research in R,” in Implementing repro-

ducible computational research, eds. V. Stodden, F. Leisch, and R. D. Peng, Chapman; Hall/CRC.

Xie, Y., Cheng, J., and Tan, X. (2024), DT: A wrapper of the JavaScript library ’DataTables’.

Yin, T., Majumder, M., Roy Chowdhury, N., Cook, D., Shoemaker, R., and Graham, M. (2013),

“Visual mining methods for RNA-seq data: Data structure, dispersion estimation and significance

testing,” Journal of Data Mining in Genomics and Proteomics, 4. https://doi.org/10.4172/2153-

0602.1000139.

Zakai, A. (2011), “Emscripten: An LLVM-to-JavaScript compiler,” in Proceedings of the ACM interna-

tional conference companion on object oriented programming systems languages and applications

companion, pp. 301–312.

Zeileis, A., and Hothorn, T. (2002), “Diagnostic checking in regression relationships,” R News, 2, 7–10.

Zhang, Y., Hou, Y., Zhou, S., and Ouyang, K. (2020), “Encoding time series as multi-scale signed

recurrence plots for classification using fully convolutional networks,” Sensors, MDPI, 20, 3818.

Zhang, Z., and Yuan, K.-H. (2018), Practical statistical power analysis using webpower and r, Isdsa

Press.

Zhu, H. (2021), kableExtra: Construct complex table with kable and pipe syntax.

117

https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=nullabor
https://CRAN.R-project.org/package=nullabor
https://doi.org/10.1109/TVCG.2010.161
https://doi.org/10.1109/TVCG.2010.161
http://www.crcpress.com/product/isbn/9781466561595
https://CRAN.R-project.org/package=DT
https://doi.org/10.4172/2153-0602.1000139
https://doi.org/10.4172/2153-0602.1000139
https://CRAN.R-project.org/package=kableExtra

Appendix A

Appendix to “A Plot is Worth a Thousand

Tests: Assessing Residual Diagnostics

with the Lineup Protocol”

A.1 Additional Details of Testing Procedures

A.1.1 Statistical Significance

Within the context of visual inference, with K independent observers, the visual p-value can be seen

as the probability of having as many or more participants detect the data plot than the observed

result.

The approach used in Majumder et al. (2013b) is as follows. Define X j = {0,1} to be a Bernoulli

random variable measuring whether participant j detected the data plot, and X =
∑K

j=1 X j be the total

number of observers who detected the data plot. Then, by imposing a relatively strong assumption

that all K evaluations are fully independent, under H0 X ∼ BinomK ,1/m. Therefore, the p-value of a

lineup of size m evaluated by K observer is estimated with P(X ≥ x) = 1− F(x)+ f (x), where F(.) is

the binomial cumulative distribution function, f (.) is the binomial probability mass function and x is

the realization of number of observers choosing the data plot.

As pointed out by VanderPlas et al. (2021), this basic binomial model is deficient. It does not take

into account the possible dependencies in the visual test due to repeated evaluations of the same

lineup, or account for when participants are offered the option to select one or more “most different”

plots, or none, from a lineup. They suggest three common lineup scenarios: (1) K different lineups

are shown to K participants, (2) K lineups with different null plots but the same data plot are shown

118

Advances in Artificial Intelligence for Data Visualization

to K participants, and (3) the same lineup is shown to K participants. Scenario 3 is the most feasible

to apply, but has the most dependencies to accommodate for the p-value calculation. For Scenario

3, VanderPlas et al propose modelling the probability of plot i being selected from a lineup as θi,

where θi ∼ Dirichlet(α) for i = 1, ..., m and α > 0. The number of times plot i being selected in K

evaluations is denoted as ci. In case participant j makes multiple selections, 1/s j will be added to

ci instead of one, where s j is the number of plots participant j selected for j = 1, ...K . This ensures
∑

i ci = K . Since we are only interested in the selections of the data plot i, the marginal model can

be simplified to a beta-binomial model and thus the visual p-value is given as

P(C ≥ ci) =
K
∑

x=ci

�

K
x

�

B(x +α, K − x + (m− 1)α)
B(α, (m− 1)α)

, for ci ∈ Z+0 (A.1)

where B(.) is the beta function defined as

B(a, b) =

∫ 1

0

tα−1(1− t)b−1d t, where a, b > 0. (A.2)

We extend the equation to non-negative real number ci by applying a linear approximation

P(C ≥ ci) = P(C ≥ ⌈ci⌉) + (⌈ci⌉ − ci)P(C = ⌊ci⌋), for ci ∈ R+0 , (A.3)

where P(C ≥ ⌈ci⌉) is calculated using Equation A.1 and P(C = ⌊ci⌋) is calculated by

P(C = ci) =
�

K
ci

�

B(ci +α, K − ci + (m− 1)α)
B(α, (m− 1)α)

, for ci ∈ Z+0 . (A.4)

The parameter α used in Equation A.1 and Equation A.4 is usually unknown and will need to be

estimated from the survey data. An interpretation of α is that when it is low only a few plots are

attractive to the observers and tend to be selected, and when high, most plots are equally likely to be

chosen. VanderPlas et al define c-interesting plot to be if c or more participants select the plot as the

most different. The expected number of plots selected at least c times, E[Zc], is then calculated as

E[Zc(α)] =
m

B(α, (m− 1)α)

K
∑

⌈c⌉

�

K
x

�

B(x +α, K − x + (m− 1)α). (A.5)

With Equation A.5, α can be estimated using maximum likelihood estimation. Precise estimation

of α, is aided by evaluation of Rorschach lineups, where all plots are null plots. In a Rorschach, in

119

Advances in Artificial Intelligence for Data Visualization

theory all plots should be equally likely, but in practice some (irrelevant) visual elements may be more

eye-catching than others. This is what α captures, the capacity for extraneous features to distract the

observer for a particular type of plot display.

A.1.2 Effect Size Derivation

Effect size can be defined as the difference of a parameter for a particular model or distribution, or

a statistic derived from a sample. Importantly, it needs to reflect the treatment we try to measure.

Centred on a conventional statistical test, we usually can deduce the effect size from the test statistic by

substituting the null parameter value. When considering the diagnostics of residual departures, there

exist many possibilities of test statistics for a variety of model assumptions. Meanwhile, diagnostic

plots such as the residual plot have no general agreement on measuring how strong a model violation

pattern is. To build a bridge between various residual-based tests, and the visual test, we focus on the

shared information embedded in the testing procedures, which is the distribution of residuals. When

comes to comparison of distribution, Kullback-Leibler divergence (Kullback and Leibler 1951) is a

classical way to represent the information loss or entropy increase caused by the approximation to

the true distribution, which in our case, the inefficiency due to the use of false model assumptions.

Following the terminology introduced by Kullback and Leibler (1951), P represents the measured

probability distribution, and Q represents the assumed probability distribution. The Kullback-Leibler

divergence is defined as
∫∞
−∞ log(p(x)/q(x))p(x)d x , where p(.) and q(.) denote probability densities

of P and Q.

Let X denotes the p+ 1 predictors with n observations, b = (X ′X)−1X ′y denotes the OLS solution,

R = In − X(X ′X)−1X ′ denotes the residual operator, and let ϵ ∼ N(0,σ2I) denotes the error. The

residual vector

e = y − X b

= y − X(X ′X)−1X ′y

= (I − X(X ′X)−1X ′)y

= Ry

= R(Xβ + ϵ)

= Rϵ.

Because rank(R) = n− p− 1< n, e follows a degenerate multivariate normal distribution and does

120

Advances in Artificial Intelligence for Data Visualization

not have a density. Since the Kullback-Leibler divergence requires a proper density function, we

need to simplify the covariance matrix of e by setting all the off-diagonal elements to 0. Then, the

residuals will be assumed to follow N(0, diag(Rσ2)) under the null hypothesis that the model is

correctly specified. If the model is however misspecified due to omitted variables Z , or a non-constant

variance V , the distribution of residuals can be derived as N(RZβz , diag(Rσ2)) and N(0, diag(RVR′))

respectively.

By assuming both P and Q are multivariate normal density functions, the Kullback-Leibler divergence

can be rewritten as

K L =
1
2

�

log
|Σp|
|Σq|
− n+ tr(Σ−1

p Σq) + (µp −µq)
′Σ−1

p (µp −µq)

�

.

Then, we can combine the two residual departures into one formula

K L =
1
2

�

log
|diag(RVR′)|
|diag(Rσ2)|

− n+ tr(diag(RVR′)−1diag(Rσ2)) +µ′z(RVR′)−1µz

�

.

When there are omitted variables but constant error variance, the formula can be reduced to

K L =
1
2

�

µ′z(diag(Rσ2))−1µz

�

.

And when the model equation is correctly specified but the error variance is non-constant, the formula

can be reduced to

K L =
1
2

�

log
|diag(RVR′)|
|diag(Rσ2)|

− n+ tr(diag(RVR′)−1diag(Rσ2))
�

.

To compute the effect size for each lineup we simulate a sufficiently large number of samples from

the same model with the number of observations n fixed for each sample. We then compute the effect

size for each sample and take the average as the final value. This ensures lineups constructed with

the same experimental factors will share the same effect size.

A.1.3 Sensitivity Analysis for α

The parameter α used for the p-value calculation needs to be estimated from responses to null

lineups. With a greater value of α̂, the p-value will be smaller, resulting in more lineups being

rejected. However, The way we generate Rorschach lineup is not strictly the same as what suggested

in VanderPlas et al. (2021) and Buja et al. (2009a). Therefore, we conduct a sensitivity analysis in

this section to examine the impact of the variation of the estimator α on our primary findings.

121

Advances in Artificial Intelligence for Data Visualization

Table A.1: Examining how decisions might change if α̂ was different. Percentage of lineups that where
the p-value would switch to above or below 0.05, when α̂ is multiplied by a multiplier.

Multiplier Reject to not reject % Not reject to reject %

0.500 7 2.51 0 0.00
0.750 4 1.43 0 0.00
0.875 3 1.08 0 0.00

1.125 0 0.00 3 1.08
1.250 0 0.00 4 1.43
1.500 0 0.00 5 1.79

The analysis is conducted by setting up several scenarios, where the α is under or overestimated by

12.5%, 25% and 50%. Using the adjusted α̂, we recalculate the p-value for every lineup and show the

results in Figure A.1. It can be observed that there are some changes to p-values, especially when the

α̂ is multiplied by 50%. However, Table A.1 shows that adjusting α̂ will not result in a huge difference

in rejection decisions. There are only a small percentage of cases where the rejection decision change.

It is very unlikely the downstream findings will be affected because of the estimate of α.

1.125 1.25 1.5

0.5 0.75 0.875

0.01% 0.1% 1% 10% 100% 0.01% 0.1% 1% 10% 100% 0.01% 0.1% 1% 10% 100%

−0.06

−0.03

0.00

0.03

0.06

−0.06

−0.03

0.00

0.03

0.06

p−value

A
dj

us
te

d
p

−
va

lu
e

m
in

us
 p

−
va

lu
e

Figure A.1: Change of p-values with α̂ multiplied by 0.5, 0.75, 0.875, 1.125, 1.25 and 1.5. Only
lineups with uniform fitted value distribution is used. The vertical dashed line indicates
p-value= 0.05. The area coloured in red indicates adjusted p-value< 0.05. The x-axis is
drawn on logarithmic scale. For multipliers smaller than 1, the adjusted p-value will initially
increase and decline when the p-value increases. The trend is opposite with multipliers
greater than 1, but the difference eventually reaches 0.

122

Advances in Artificial Intelligence for Data Visualization

A.1.4 Effect of Number of Evaluations on the Power of a Visual Test

When comparing power of visual tests across different fitted value distributions, we have discussed

the number of evaluations on a lineup will affect the power of the visual test. Using the lineups with

uniform fitted value distribution, we show in Figure A.2 the change of power of visual tests due to

different number of evaluations. It can be learned that as the number of evaluations increases, the

power will increase but the margin will decrease. Considering we have eleven evaluations on lineups

with uniform fitted value distribution, and five evaluations on other lineups, it is necessary to use the

same number of evaluations for each lineup in comparison.

0.25

0.50

0.75

1.00

0 2 4

loge(Effect_size)

P
ow

er

#Evaluations

1

3

5

7

9

11

Figure A.2: Change of power of visual tests for different number of evalutions on lineups with uniform
fitted value distribution. The power will increase as the number of evaluations increases,
but the margin will decrease.

A.1.5 Power of a RESET Test under Different Auxiliary Regression Formulas

It is found in the result that the power of a RESET test will be affected by the highest order of fitted

values included in the auxiliary formula. And we suspect that the current recommendation of the

highest order - four, is insufficient to test complex non-linear structures such as the “triple-U” shape

designed in this paper. Figure A.3 illustrates the change of power of RESET test while testing the “U”

shape and the “triple-U” shape with different highest orders. Clearly, when testing a simple shape

like the “U” shape, the highest order has very little impact on the power. But for testing the “triple-U”

shape, there will be a loss of power if the recommended order is used. To avoid the loss of power, the

highest order needs to be set to at least six.

A.1.6 Conventional Test Rejection Rate for Varying Significance Levels

In the main paper, Section 2.5.1 and Section 2.5.2 compared the power, and the decisions made by the

conventional tests and the visual test. The power curves for the visual test is effectively a right-shift

123

Advances in Artificial Intelligence for Data Visualization

U triple−U

0 2 4 0 2 4

0.25

0.50

0.75

1.00

loge(Effect_size)

P
ow

er

Highest order

3

4

5

6

7

8

9

10

Figure A.3: Change of power of RESET tests for different orders of fitted values included in the auxiliary
formula. The left panel is the power of testing the “U” shape and the right panel is the power
of testing the “triple-U” shape. The power will not be greatly affected by the highest order
in the case of testing the “U” shape. In the case of testing the “triple-U” shape, the highest
order needs to be set to at least six to avoid the loss of power.

from the conventional test. The effect is that the visual test rejects less often than the conventional

test, at the same significance level. We also saw that the visual test rejected a subset of those that

the conventional tests rejected. This means that they agreed quite well - only residual plots rejected

by the conventional tests were rejected by the visual test. There was little disagreement, where

residual plots not rejected by the conventional test were rejected by the visual test. The question

arises whether the decisions made conventional test could be made similar to that of the visual test

by reducing the significance level. Reducing the significance level from 0.05, to 0.01, 0.001, . . . will

have the effect of rejecting fewer of the residual plots.

It would be interesting if a different conventional test significance level results in both the visual tests

and conventional tests reject only the same residual plots, and fails to reject the same residual plots.

This would be a state where both systems agree perfectly. Figure A.4 examines this. Plot A shows the

percentage of residual plots rejected by the visual test, given the conventional test rejected (solid

lines) or failed to reject (dashed lines). The vertical grey line marks significance level 0.05. When the

significance level gets smaller, it is possible to see that the visual tests reject (nearly) 100% of the

time that the conventional test rejects. However, there is no agreement, because the visual tests also

increasingly reject residual plots where the conventional test failed to reject. Plot B is comparable to

an ROC curve, where the percentage visual test rejection conditional on conventional test decision is

plotted: Reject conditional on reject is plotted against reject conditional on fail to reject, for different

124

Advances in Artificial Intelligence for Data Visualization

0

25

50

75

100

1e−011e−031e−051e−071e−091e−11
Significance level

V
is

ua
l t

es
t r

ej
ec

ts
 (

%
)

A

0

25

50

75

100

0 10 20 30 40 50
Reject | Fail to reject (%)

R
ej

ec
t |

 R
ej

ec
t (

%
)

B

non−linearity heteroskedasticity

Figure A.4: Changing the significance level of the conventional test will change the rejection rate. A:
Percentage of conventional tests also rejected by the visual test: rejected (solid), not rejected
(dashed). As the significance level is reduced, the percentage rejected by the visual test that
has been rejected by the conventional test approaches 100. The percentage of tests not
rejected by the conventional test also increases, as expected, but the percentage of these that
are rejected by the visual test increases too. B: ROC curve shows that forcing the conventional
test to not reject creates a discrepancy with the visual test. Many of the residual plots not
rejected by the conventional test are rejected by the visual test. It is not possible to vary the
significance level of the conventional test to match the decisions made by the visual test.

significance levels. The non-linearity pattern results are close to being ideal, that the percentage of

reject relative to fail to reject increases very slowly as the reject relative to reject converges to 100.

The heteroskedasticity pattern is more problematic, and shows that the cost of rejecting less with the

conventional test is disagreement with the visual test.

A.2 Additional Details of Experimental Setup

A.2.1 Non-linearity Model

The non-linearity model used in the experiment includes a non-linear term z constructed using

Hermite polynomials on random vector x formulated as

y = 1n + x + z + ϵ,

x = g(xraw, 1),

125

Advances in Artificial Intelligence for Data Visualization

z = g(zraw, 1),

zraw = He j(g(x , 2)),

where y , x , ϵ, xraw, zraw are vectors of size n, 1n is a vector of ones of size n, He j(.) is the jth-order

probabilist’s Hermite polynomials (Hermite 1864; originally by Laplace 1820), ϵ ∼ N(0n,σ2In), and

g(x , k) is a scaling function to enforce the support of the random vector to be [−k, k]n defined as

g(x , k) = 2k ·
x − xmin1n

xmax − xmin
− k, for k > 0. (A.6)

where xmin = min
i∈{1,...,n}

x i , xmax = max
i∈{1,...,n}

x i and x i is the i-th entry of x . The function hermite from

the R package mpoly (Kahle 2013) is used to simulate zraw to generate Hermite polynomials.

The null regression model used to fit the realizations generated by the above model is formulated as

y = β01n + β1x + u, (A.7)

where u ∼ N(0,σ2In). Here z is a higher order term of x and leaving it out in the null regression

results in model misspecification.

A.2.2 Heteroskedasticity Model

The heteroskedasticity model used in the experiment is formulated as

y = 1n + x + ϵ,

x = g(xraw, 1),

ϵ ∼ N(0n,1n + (2− |a|)(x − a1n)
′(x − a1n)bIn),

where y , x , ϵ are vectors of size n and g(.) is the scaling function defined in Equation A.6. The null

regression model used to fit the realizations generated by the above model is formulated exactly the

same as Equation A.7.

For b ̸= 0, the variance-covariance matrix of the error term ϵ is correlated with the predictor x , which

will lead to the presence of heteroskedasticity.

Since supp(X) = [−1,1], choosing a to be −1, 0 and 1 can generate “left-triangle”, “butterfly” and

“right-triangle” shapes. The term (2−|a|)maintains the magnitude of residuals across different values

126

Advances in Artificial Intelligence for Data Visualization

of a.

A.2.3 Controlling the Signal Strength

The three parameters n, σ and b are important for controlling the strength of the signal to generate

lineups with a variety difficulty levels. This will ensure that estimated power curves will be smooth

and continuous, and that participants are allocated a set of lineups with a range of difficulty.

Parameter σ ∈ {0.5,1,2,4} and b ∈ {0.25,1,4,16,64} are used in data collection periods I and II

respectively. A large value of σ will increase the variation of the error of the non-linearity model and

decrease the visibility of the visual pattern. The parameter b controls the variation in the standard

deviation of the error across the support of the predictor. A larger value of b generates a larger ratio

between it is smallest and highest values, making the visual pattern more obvious. The sample size n

sharpens (or blurs) a pattern when it is larger (or smaller).

A.2.4 Lineup Allocation to Participants

There are a total of 4× 4× 3× 4= 192 and 3× 5× 3× 4= 180 combinations of parameter values

for the non-linearity model and heteroskedasticity models respectively. Three replications for each

combination results in 192× 3= 576 and 180× 3= 540 lineups, respectively.

Each lineup needs to be evaluated by at least five participants. From previous work, and additional

pilot studies for this experiment, we decided to record evaluations from 20 lineups for each participant.

Two of the 20 lineups with clear visual patterns were used as attention checks, to ensure quality data.

Thus, 576× 5/(20− 2) = 160 and 540× 5/(20− 2) = 150 participants were needed to cover the

experimental design for the data collection periods I and II, respectively. The factor levels and range

of difficulty was assigned relatively equally among participants.

Data collection period III was primarily to obtain Rorschach lineup evaluations to estimate α, and

also to obtain additional evaluations of lineups made with uniform fitted value distribution to ensure

consistency in the results. To construct a Rorschach lineup, the data is generated from a model

with zero effect size, while the null data are generated using the residual rotation technique. This

procedure differs from that of the canonical Rorschach lineup, where all 20 plots are generated

directly from the null model, so the method suggested in VanderPlas et al. (2021) for typical lineups

containing a data plot is used to estimate α. The 3× 4= 12 treatment levels of the common factors,

replicated three times results in 36 lineups. And 6 more evaluations on the 279 lineups with uniform

fitted value distribution, results in at least (36×20+279×3×6)/(20−2) = 133 participants needed.

127

Advances in Artificial Intelligence for Data Visualization

A.2.5 Mapping of Participants to Experimental Factors

Mapping of participants to experimental factors is an important part of experimental design. Essentially,

we want to maximum the difference in factors exposed to a participant. For this purpose, we design

an algorithm to conduct participant allocation. Let L be a set of available lineups and S be a set of

available participants. According to the experimental design, the availability of a lineup is associated

with the number of participants it can assign to. For lineups with uniform fitted value distribution, this

value is 11. And other lineups can be allocated to at most five different participants. The availability

of a participant is associated with the number of lineups that being allocated to this participant. A

participant can view at most 18 different lineups.

The algorithm starts from picking a random participant s ∈ S with the minimum number of allocated

lineups. It then tries to find a lineup l ∈ L that can maximise the distance metric D and allocate it to

participant s. Set L and S will be updated and the picking process will be repeated until there is no

available lineups or participants.

Let F1, ..., Fq be q experimental factors, and f1, ..., fq be the corresponding factor values. We say fi

exists in Ls if any lineup in Ls has this factor value. Similarly, fi f j exists in Ls if any lineup in Ls has

this pair of factor values. And fi f j fk exists in Ls if any lineup in Ls has this trio of factor values. The

distance metric D is defined between a lineup l and a set of lineups Ls allocated to a participant s if

Ls is non-empty:

D = C −
∑

1≤i≤q

I(fi exists in Ls)−
∑

1≤i≤q−1
i< j≤q

I(fi f j exists in Ls)−
∑

1≤i≤q−2
i< j≤q−1

j<k≤q

I(fi f j fk exists in Ls)

where C is a sufficiently large constant such that D > 0. If Ls is empty, we define D = 0.

The distance measures how different a lineup is from the set of lineups allocated to the participant in

terms of factor values. Thus, the algorithm will try to allocate the most different lineup to a participant

at each step.

In Figure A.5 and Figure A.6, we present examples of lineup allocations generated by our algorithm

for data collection periods I and II, respectively. These figures illustrate the factor values presented to

the first 20 participants recruited during each period. It can be observed that the algorithm effectively

distributed almost all possible one-way and two-way factor combinations among the participants,

thereby ensuring a diverse set of lineups for each participant.

128

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

0.5 1 2 4 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4

U

S

M

triple−U

U

S

M

triple−U

U

S

M

triple−U

U

S

M

triple−U

σ

N
on

−
lin

ea
rit

y
pa

tte
rn

Sample size

50

100

300

Figure A.5: Factor values assigned to the first 20 participants recruited during data collection period I,
with data points slightly jittered to prevent overlap. Each participant have been exposed to
all one-way and two-way factor combinations.

A.2.6 Data Collection Process

The survey data is collected via a self-hosted website designed by us. The complete architecture

is provided in Figure A.7. The website is built with the Flask (Grinberg 2018) web framework

and hosted on PythonAnywhere (PythonAnywhere LLP 2023). It is configured to handle HTTP

requests such that participants can correctly receive webpages and submit responses. Embedded

in the resources sent to participants, the jsPsych front-end framework (De Leeuw 2015) instructs

participants’ browsers to render an environment for running behavioural experiments. During the

experiment, this framework will automatically collect common behavioural data such as response

time and clicks on buttons. participants’ responses are first validated by a scheduled Python script

run on the server, then push to a Github repository. Lineup images shown to users are saved in

multiple Github repositories and hosted in corresponding Github pages. The URLs to these images

are resolved by Flask and bundled in HTML files.

Once the participant is recruited from Prolific (Palan and Schitter 2018), it will be redirected to the

entry page of our study website. An image of the entry page is provided in Figure A.8. Then, the

participant needs to submit the online consent form and fill in the demographic information as shown

in Figure A.9 and Figure A.10 respectively. Before evaluating lineups, participant also need to read

129

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

0.25 1 4 16 64 0.25 1 4 16 64 0.25 1 4 16 64 0.25 1 4 16 64 0.25 1 4 16 64

left−triangle

butterfly

right−triangle

left−triangle

butterfly

right−triangle

left−triangle

butterfly

right−triangle

left−triangle

butterfly

right−triangle

b

H
et

er
os

ke
da

st
ic

ity
 p

at
te

rn

Sample size

50

100

300

Figure A.6: Factor values assigned to the first 20 participants recruited during data collection period II,
with data points slightly jittered to prevent overlap. Each participant appears to have been
exposed to almost all one-way and two-way factor combinations. However, two participants,
namely participant 16 and participant 18, were not presented with lineups containing a
butterfly shape with b = 4. Additionally, participant 7 did not encounter a lineup featuring
a butterfly shape with b = 1.

the training page as provide in Figure A.11 to understand the process. An example of the lineup

page is given in Figure A.12. A half of the page is taken by the lineup image to attract participant’s

attention. The button to skip the selections for the current lineup is intentionally put in the corner of

the bounding box with smaller font size, such that participants will not misuse this functionality.

A.3 Analysis of Results Relative to Data Collection Process

A.3.1 Demographics

Throughout the study, we have collected 7254 evaluations on 1116 non-null lineups. Table A.2 gives

further details about the number of evaluations, lineups and participants over pattern types and data

collection periods.

Along with the responses to lineups, we have collected a series of demographic information including

age, pronoun, education background and previous experience in studies involved data visualization.

Table A.3, Table A.4, Table A.5 and Table A.6 provide summary of the demographic data.

It can be observed from the tables that most participants have Diploma or Bachelor degrees, followed

130

Advances in Artificial Intelligence for Data Visualization

Figure A.7: Diagram of online experimental setup. The server-side of the study website uses Flask as
backend hosted on PythonAnywhere. And the client-side uses jsPsych to run experiment.

Table A.2: Count of lineups, evaluations and participants over departure types and data collection
periods.

Non-linearity Heteroskedasticity

Number I II III I II II Total

Lineups 576 0 144 0 540 135 1116
Evaluations 2880 0 864 0 2700 810 7254
Participants 160 0 123 0 160 123 443

131

Advances in Artificial Intelligence for Data Visualization

Figure A.8: The entry page of the study website.

Figure A.9: The consent form provided in the study website.

by High school or below and the survey data is gender balanced. Majority of participants are between

18 to 39 years old and there are slightly more participants who do not have previous experience than

those who have.

A.3.2 Data Collection Periods

We have the same type of model collected over different data collection periods, that may lead to

unexpected batch effect. Figure A.13 and Figure A.14 provide two lineups to examine whether there

is an actual difference across data collection periods for non-linearity model and heteroskedasticity

132

Advances in Artificial Intelligence for Data Visualization

Figure A.10: The form to provide demographic information.

Figure A.11: The training page of the study website.

Table A.3: Summary of pronoun distribution of participants recruited in this study.

Pronoun Period I % Period II % Period III % Total %

He 77 17.4 79 17.8 61 13.8 217 49.0
She 78 17.6 77 17.4 61 13.8 216 48.8
Other 5 1.1 4 0.9 1 0.2 10 2.3

160 36.1 160 36.1 123 27.8 443 100.0

133

Advances in Artificial Intelligence for Data Visualization

Figure A.12: The lineup page of the study website.

Table A.4: Summary of age distribution of participants recruited in this study.

Age group Period I % Period II % Period III % Total %

18-24 83 18.7 86 19.4 51 11.5 220 49.7
25-39 69 15.6 63 14.2 63 14.2 195 44.0
40-54 6 1.4 8 1.8 6 1.4 20 4.5
55-64 2 0.5 3 0.7 3 0.7 8 1.8

160 36.1 160 36.1 123 27.8 443 100.0

Table A.5: Summary of education distribution of participants recruited in this study.

Education Period I % Period II % Period III % Total %

High School or below 41 9.3 53 12.0 33 7.4 127 28.7
Diploma and Bachelor Degree 92 20.8 79 17.8 66 14.9 237 53.5
Honours Degree 6 1.4 15 3.4 6 1.4 27 6.1
Masters Degree 21 4.7 13 2.9 16 3.6 50 11.3
Doctoral Degree 0 0.0 0 0.0 2 0.5 2 0.5

160 36.1 160 36.1 123 27.8 443 100.0

Table A.6: Summary of previous experience distribution of participants recruited in this study.

Previous experience Period I % Period II % Period III % Total %

No 96 21.7 88 19.9 67 15.1 251 56.7
Yes 64 14.4 72 16.3 56 12.6 192 43.3

160 36.1 160 36.1 123 27.8 443 100.0

134

Advances in Artificial Intelligence for Data Visualization

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

I III I III I III I III I III

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Data collection period

W
ei

gh
te

d
pr

op
ot

io
n

of
 d

et
ec

t

Quantiles

0.5

[0.25, 0.75]

[0.125, 0.875]

[0.0625, 0.09375]

Figure A.13: A lineup of “letter-value” boxplots of weighted propotion of detect for lineups over different
data collection periods for non-linearity model. Can you find the most different boxplot?
The data plot is positioned in panel 23 − 1.

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

II III II III II III II III II III

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Data collection period

W
ei

gh
te

d
pr

op
ot

io
n

of
 d

et
ec

t

Quantiles

0.5

[0.25, 0.75]

[0.125, 0.875]

[0.0625, 0.09375]

Figure A.14: A lineup of “letter-value” boxplots of weighted propotion of detect for lineups over different
data collection periods for heteroskedasticity model. Can you find the most different
boxplot? The data plot is positioned in panel 24 − 2.

135

Advances in Artificial Intelligence for Data Visualization

model respectively. To emphasize the tail behaviour and display fewer outliers, we use the “letter-

value” boxplot (Hofmann et al. 2017) which is an extension of the number of “letter value” statistics to

check the weighed proportion of detect over different data collection period. The weighted proportion

of detect is calculated by taking the average of ci of a lineup over a data collection period. Within our

research team, we can not identify the data plot from the null plots for these two lineups, result in

p-values much greater than 5%. Thus, there is no clear evidence of batch effect.

136

Appendix B

Appendix to “Automated Assessment of

Residual Plots with Computer vision Mod-

els”

B.1 Neural Network Layers Used in the Study
This study used seven types of neural network layers, all of which are standard components frequently

found in modern deep learning models. These layers are well-documented in textbooks like Goodfellow

et al. (2016) and Chollet (2021), which offer thorough explanations and mathematical insights. In

this section, we will offer a concise overview of these layers, drawing primarily from the insights

provided in Goodfellow et al. (2016).

B.1.1 Dense Layer

The Dense layer, also known as the fully-connected layer, is the fundamental unit in neural networks.

It conducts a matrix multiplication operation between the input matrix I and a weight matrix W to

generate the output matrix O, which can be written as

O = IW + b,

where b is the intercept.

B.1.2 ReLu Layer

The ReLU layer, short for rectified linear unit, is an element-wise non-linear function introduced by

Nair and Hinton (2010). It sets the output elements to zero if the corresponding input element is

137

Advances in Artificial Intelligence for Data Visualization

negative; otherwise, it retains the original input. Mathematically, it can be expressed as:

O(i, j) = max{0, I(i, j)},

where O(i, j) is the ith row and jth column entry of matrix O, and I(i, j) is the ith row and jth

column entry of matrix I .

B.1.3 Convolutional Layer

In Dense layers, matrix multiplication leads to each output unit interacting with every input unit,

whereas convolutional layers operate differently with sparse interactions. An output unit in a

convolutional layer is connected solely to a subset of input units, and the weight is shared across all

input units. Achieving this involves using a kernel, typically a small square matrix, to conduct matrix

multiplication across all input units. Precisely, this concept can be formulated as:

O(i, j) =
∑

m

∑

n

I(i −m, j − n)K(m, n),

where m and n are the row and columns indices of the kernel K .

If there are multiple kernels used in one covolutional layer, then each kernel will have its own weights

and the output will be a three-dimensional tensor, where the length of the third channel is the number

of kernels.

B.1.4 Pooling Layer

A pooling layer substitutes the input at a specific location with a summary statistic derived from

nearby input units. Typically, there are two types of pooling layers: max pooling and average pooling.

Max pooling computes the maximum value within a rectangular neighborhood, while average pooling

calculates their average. Pooling layers helps making the representation approximately invariant to

minor translations of the input. The output matrix of a pooling layer is approximately s times smaller

than the input matrix, where s represents the length of the rectangular area. A max pooling layer can

be formulated as:

O(i, j) =max
m,n

I(si +m, s j + n).

B.1.5 Global Pooling Layer

A global pooling layer condenses an input matrix into a scalar value by either extracting the maximum

or computing the average across all elements. This layer acts as a crucial link between the convolutional

138

Advances in Artificial Intelligence for Data Visualization

structure and the subsequent dense layers in a neural network architecture. When convolutional

layers uses multiple kernels, the output becomes a three-dimensional tensor with numerous channels.

In this scenario, the global pooling layer treats each channel individually, much like distinct features

in a conventional classifier. This approach facilitates the extraction of essential features from complex

data representations, enhancing the network’s ability to learn meaningful patterns. A global max

pooling layer can be formulated as

O(i, j) =max
m,n,k

I(si +m, s j + n, k),

where k is the kernel index.

B.1.6 Batch Normalization Layer

Batch normalization is a method of adaptive reparametrization. One of the issues it adjusts is the

simultaneous update of parameters in different layers, especially for network with a large number

layers. At training time, the batch normalization layer normalizes the input matrix I using the formula

O =
I −µI

σI
,

where µI and σI are the mean and the standard deviation of each unit respectively.

It reparametrizes the model to make some units always be standardized by definition, such that the

model training is stabilized. At inference time, µI and σI are usually replaced with the running mean

and running average obtained during training.

B.1.7 Dropout Layer

Dropout is a computationally inexpensive way to apply regularization on neural network. For

each input unit, it randomly sets to be zero during training, effectively training a large number of

subnetworks simultaneously, but these subnetworks share weights and each will only be trained for a

single steps in a large network. It is essentially a different implementation of the bagging algorithm.

Mathematically, it is formulated as

O(i, j) = D(i, j)I(i, j),

where D(i, j)∼ B(1, p) and p is a hyperparameter that can be tuned.

139

Appendix C

Appendix to “Software for Automated

Residual Plot Assessment: autovi and

autovi.web”

C.1 Extending the AUTO_VI class
The bandicoot R package provides a lightweight object-oriented system with Python-like syntax that

supports multiple inheritance and incorporates a Python-like method resolution order. The system is

inspired by the OOP frameworks implemented in R6 [r6] and Python. In this section, we will provide

essential details for extending the autovi::AUTO_VI class using bandicoot.

In bandicoot, a class is declared using the bandicoot::new_class() function, where parent

classes are provided as positional arguments, and the class name is specified through the class_name

argument. The output of bandicoot::new_class() is an environment with the S3 class bandi-

coot_oop. Printing a bandicoot object provides a summary of the object, which can be customized

via the ..str.. magic method.

library(autovi)

EXT_AUTO_VI <- bandicoot::new_class(AUTO_VI, class_name = "EXT_AUTO_VI")

EXT_AUTO_VI

-- <EXT_AUTO_VI class>

140

Advances in Artificial Intelligence for Data Visualization

An extended class inherits attributes and methods from its parent class(es), so it will behave similarly

to them. This can be verified using the built-in names() function.

names(EXT_AUTO_VI)

[1] "vss" "rotate_resid" "..init.."

[4] "plot_lineup" "get_data" "has_attr"

[7] "lineup_check" "null_vss" "check_result"

[10] "summary_plot" "..str.." "..new.."

[13] "del_attr" "plot_resid" "null_method"

[16] "..class.." "..method_env.." "auxiliary"

[19] "summary" "set_attr" "get_attr"

[22] "summary_density_plot" "get_fitted_and_resid" "..methods.."

[25] "..class_tree.." "..repr.." "feature_pca"

[28] "plot_pair" "check" "boot_vss"

[31] "feature_pca_plot" "boot_method" "save_plot"

[34] "summary_rank_plot" "instantiate" "p_value"

[37] "..instantiated.." "..type.." "..dir.."

[40] "..len.." "..bases.." "..mro.."

[43] "likelihood_ratio"

To register a method for an extended class, you need to pass the class as the first argument and the

method as a named argument to the bandicoot::register_method() function. Within a method,

self can be used as a reference to the class or object environment. The following code example

overrides the null_method() with a function that simulates null residuals from the corresponding

normal distribution. This approach differs from the default null residual simulation scheme described

earlier. Although less efficient than the default method for linear regression models, it provides an

alternative way to simulate null residuals. This method is particularly useful when the fitted model is

unavailable, and only the fitted values and residuals are accessible, as discussed in Section 4.3.

bandicoot::register_method(

EXT_AUTO_VI,

null_method = function(fitted_model = self$fitted_model) {

data <- self$get_fitted_and_resid(fitted_model)

residual_sd <- sd(data$.resid)

data$.resid <- rnorm(nrow(data),

sd = residual_sd)

141

Advances in Artificial Intelligence for Data Visualization

return(data)

}

)

EXT_AUTO_VI$null_method(lm(dist ~ speed, data = cars))

A tibble: 50 x 2

.fitted .resid

<dbl> <dbl>

1 -1.85 -0.841

2 -1.85 -8.15

3 9.95 15.1

4 9.95 -6.75

5 13.9 -7.05

6 17.8 -11.2

7 21.7 -13.5

8 21.7 -3.36

9 21.7 23.2

10 25.7 11.1

i 40 more rows

To create an object in bandicoot, you need to call the instantiate() method of a class. Alter-

natively, you can build a convenient class constructor for your class. It is recommended to provide

the full list of arguments in the class constructor instead of using ..., as this makes it easier for

integrated development environments (IDEs) like RStudio to offer argument completion hints to the

user.

ext_auto_vi <- function(fitted_model,

keras_model = NULL,

data = NULL,

node_index = 1L,

env = new.env(parent = parent.frame()),

init_call = sys.call()) {

EXT_AUTO_VI$instantiate(fitted_model = fitted_model,

keras_model = keras_model,

data = data,

142

Advances in Artificial Intelligence for Data Visualization

node_index = node_index,

env = env,

init_call = init_call)

}

ext_auto_vi(lm(dist ~ speed, data = cars))

143

	Copyright notice
	Abstract
	Declaration
	Acknowledgements
	Introduction
	Thesis Outline

	A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol
	Introduction
	Background
	Calculation of Statistical Significance and Test Power
	Experimental Design
	Results
	Limitations and Practicality
	Conclusions

	Automated Assessment of Residual Plots with Computer Vision Models
	Introduction
	Model Specifications
	Distance from a Theoretically ``Good'' Residual Plot
	Distance Estimation
	Statistical Testing
	Model Violations Index
	Data Generation
	Model Architecture
	Model Training
	Results
	Examples
	Limitations and Future Work
	Conclusions

	Software for Automated Residual Plot Assessment: autovi and autovi.web
	Introduction
	R package: autovi
	Web interface: autovi.web
	Conclusions
	Availability

	Conclusion and future plans
	Contributions
	Future work

	Bibliography
	Appendices
	Appendix to ``A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol''
	Additional Details of Testing Procedures
	Additional Details of Experimental Setup
	Analysis of Results Relative to Data Collection Process

	Appendix to ``Automated Assessment of Residual Plots with Computer vision Models''
	Neural Network Layers Used in the Study

	Appendix to ``Software for Automated Residual Plot Assessment: autovi and autovi.web''
	Extending the AUTO_VI class

