Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., and others (2016), “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467.
Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., and Dervieux, C. (2024), Quarto.” https://doi.org/10.5281/zenodo.5960048.
Belsley, D. A., Kuh, E., and Welsch, R. E. (1980), Regression diagnostics: Identifying influential data and sources of collinearity, John Wiley & Sons.
Box, G. E. (1976), “Science and statistics,” Journal of the American Statistical Association, Taylor & Francis, 71, 791–799.
Breusch, T. S., and Pagan, A. R. (1979), “A simple test for heteroscedasticity and random coefficient variation,” Econometrica: Journal of the Econometric Society, JSTOR, 1287–1294.
Brunetti, A., Buongiorno, D., Trotta, G. F., and Bevilacqua, V. (2018), “Computer vision and deep learning techniques for pedestrian detection and tracking: A survey,” Neurocomputing, Elsevier, 300, 17–33.
Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.-K., Swayne, D. F., and Wickham, H. (2009a), “Statistical inference for exploratory data analysis and model diagnostics,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society Publishing, 367, 4361–4383.
Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.-K., Swayne, D. F., and Wickham, H. (2009b), “Statistical inference for exploratory data analysis and model diagnostics,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 4361–4383. https://doi.org/10.1098/rsta.2009.0120.
Chang, W., and Borges Ribeiro, B. (2021), Shinydashboard: Create dashboards with ’shiny’.
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B. (2022), Shiny: Web application framework for r.
Chen, Y., Su, S., and Yang, H. (2020), “Convolutional neural network analysis of recurrence plots for anomaly detection,” International Journal of Bifurcation and Chaos, World Scientific, 30, 2050002.
Cheng, J., Sievert, C., Schloerke, B., Chang, W., Xie, Y., and Allen, J. (2024), Htmltools: Tools for HTML.
Chollet, F. (2021), Deep learning with python, Simon; Schuster.
Chollet, F., and others (2015), “Keras,” https://keras.io.
Chopra, S., Hadsell, R., and LeCun, Y. (2005), “Learning a similarity metric discriminatively, with application to face verification,” in 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), IEEE, pp. 539–546.
Chowdhury, N. R., Cook, D., Hofmann, H., and Majumder, M. (2018), “Measuring lineup difficulty by matching distance metrics with subject choices in crowd-sourced data,” Journal of Computational and Graphical Statistics, Taylor & Francis, 27, 132–145.
Chu, H., Liao, X., Dong, P., Chen, Z., Zhao, X., and Zou, J. (2019), “An automatic classification method of well testing plot based on convolutional neural network (CNN),” Energies, MDPI, 12, 2846.
Clark, A., and others (2015), “Pillow (pil fork) documentation,” readthedocs.
Cleveland, W. S., and McGill, R. (1984), “Graphical perception: Theory, experimentation, and application to the development of graphical methods,” Journal of the American Statistical Association, Taylor & Francis, 79, 531–554.
Cook, R. D., and Weisberg, S. (1982), Residuals and influence in regression, New York: Chapman; Hall.
Cook, R. D., and Weisberg, S. (1999), Applied regression including computing and graphics, John Wiley & Sons.
Davies, R., Locke, S., and D’Agostino McGowan, L. (2022), datasauRus: Datasets from the datasaurus dozen.
Davison, A. C., and Hinkley, D. V. (1997), Bootstrap methods and their application, Cambridge university press.
De Leeuw, J. R. (2015), “jsPsych: A JavaScript library for creating behavioral experiments in a web browser,” Behavior Research Methods, Springer, 47, 1–12.
Draper, N. R., and Smith, H. (1998), Applied regression analysis, John Wiley & Sons.
Dunn, P. K., and Smyth, G. K. (1996), “Randomized quantile residuals,” Journal of Computational and graphical statistics, Taylor & Francis, 5, 236–244.
Emami, S., and Suciu, V. P. (2012), “Facial recognition using OpenCV,” Journal of Mobile, Embedded and Distributed Systems, 4, 38–43.
Farrar, T. J. (2020), Skedastic: Heteroskedasticity diagnostics for linear regression models, Bellville, South Africa: University of the Western Cape.
Fieberg, J., Freeman, S., and Signer, J. (2024), “Using lineups to evaluate goodness of fit of animal movement models,” Methods in Ecology and Evolution, Wiley Online Library.
Frisch, R., and Waugh, F. V. (1933), “Partial time regressions as compared with individual trends,” Econometrica: Journal of the Econometric Society, JSTOR, 387–401.
Fukushima, K., and Miyake, S. (1982), “Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position,” Pattern recognition, Elsevier, 15, 455–469.
Gautier, L. (2024), Python interface to the r language (embedded r).
Gebhardt, A., Bivand, R., and Sinclair, D. (2023), Interp: Interpolation methods.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013), Bayesian data analysis (3rd ed.), Chapman and Hall/CRC.
Goode, K., and Rey, K. (2019), ggResidpanel: Panels and interactive versions of diagnostic plots using ’ggplot2’.
Goodfellow, I., Bengio, Y., and Courville, A. (2016), Deep learning, MIT press.
Goscinski, W. J., McIntosh, P., Felzmann, U., Maksimenko, A., Hall, C. J., Gureyev, T., Thompson, D., Janke, A., Galloway, G., Killeen, N. E., and others (2014), “The multi-modal australian ScienceS imaging and visualization environment (MASSIVE) high performance computing infrastructure: Applications in neuroscience and neuroinformatics research,” Frontiers in Neuroinformatics, Frontiers Media SA, 8, 30.
Grinberg, M. (2018), Flask web development: Developing web applications with python, " O’Reilly Media, Inc.".
Hailesilassie, T. (2019), “Financial market prediction using recurrence plot and convolutional neural network,” Preprints.
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., and others (2020), “Array programming with NumPy,” Nature, Nature Publishing Group UK London, 585, 357–362.
Harrison Jr, D., and Rubinfeld, D. L. (1978), “Hedonic housing prices and the demand for clean air,” Journal of environmental economics and management, Elsevier, 5, 81–102.
Hartig, F. (2022), DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models.
Hastie, T. J. (2017), “Generalized additive models,” in Statistical models in s, Routledge, pp. 249–307.
Hatami, N., Gavet, Y., and Debayle, J. (2018a), Classification of time-series images using deep convolutional neural networks,” in Tenth international conference on machine vision (ICMV 2017), eds. A. Verikas, P. Radeva, D. Nikolaev, and J. Zhou, International Society for Optics; Photonics; SPIE, p. 106960Y. https://doi.org/10.1117/12.2309486.
Hatami, N., Gavet, Y., and Debayle, J. (2018b), “Classification of time-series images using deep convolutional neural networks,” in Tenth international conference on machine vision (ICMV 2017), SPIE, pp. 242–249.
He, K., Zhang, X., Ren, S., and Sun, J. (2016), “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
Hebbali, A. (2024), Olsrr: Tools for building OLS regression models.
Hermite, M. (1864), Sur un nouveau développement en série des fonctions, Imprimerie de Gauthier-Villars.
Hester, J., and Bryan, J. (2022), Glue: Interpreted string literals.
Hofmann, H., VanderPlas, S., and Ge, Y. (2022), Ggpcp: Parallel coordinate plots in the ’ggplot2’ framework.
Hofmann, H., Wickham, H., and Kafadar, K. (2017), “Value plots: Boxplots for large data,” Journal of Computational and Graphical Statistics, Taylor & Francis, 26, 469–477.
Hornik, K. (2012), “The comprehensive r archive network,” Wiley interdisciplinary reviews: Computational statistics, Wiley Online Library, 4, 394–398.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017), “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708.
Hyndman, R. J., and Fan, Y. (1996), “Sample quantiles in statistical packages,” The American Statistician, Taylor & Francis, 50, 361–365.
Jamshidian, M., Jennrich, R. I., and Liu, W. (2007), “A study of partial f tests for multiple linear regression models,” Computational Statistics & Data Analysis, Elsevier, 51, 6269–6284.
Jarque, C. M., and Bera, A. K. (1980), “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Economics Letters, Elsevier, 6, 255–259.
Jeppson, H., Hofmann, H., and Cook, D. (2021), Ggmosaic: Mosaic plots in the ’ggplot2’ framework.
Johnson, P. E. (2022), Rockchalk: Regression estimation and presentation.
Kahle, D. (2013), “Mpoly: Multivariate polynomials in R,” The R Journal, 5, 162–170.
Kahneman, D. (2011), Thinking, fast and slow, macmillan.
Kimball, A. (1957), “Errors of the third kind in statistical consulting,” Journal of the American Statistical Association, Taylor & Francis, 52, 133–142.
Kingma, D. P., and Ba, J. (2014), “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980.
Kirk, R. E. (1996), “Practical significance: A concept whose time has come,” Educational and psychological measurement, Sage Publications Sage CA: Thousand Oaks, CA, 56, 746–759.
Krishnan, G., and Hofmann, H. (2021), “Hierarchical decision ensembles-an inferential framework for uncertain human-AI collaboration in forensic examinations,” arXiv preprint arXiv:2111.01131.
Kuhn, M., Vaughan, D., and Hvitfeldt, E. (2024), Yardstick: Tidy characterizations of model performance.
Kullback, S., and Leibler, R. A. (1951), “On information and sufficiency,” The Annals of Mathematical Statistics, JSTOR, 22, 79–86.
Langsrud, Ø. (2005), “Rotation tests,” Statistics and computing, Springer, 15, 53–60.
Laplace, P.-S. (1820), Théorie analytique des probabilités, Courcier.
Lee, H., and Chen, Y.-P. P. (2015), “Image based computer aided diagnosis system for cancer detection,” Expert Systems with Applications, Elsevier, 42, 5356–5365.
Li, W. (2024), Bandicoot: Light-weight python-like object-oriented system.”
Li, W., Cook, D., Tanaka, E., and VanderPlas, S. (2024), “A plot is worth a thousand tests: Assessing residual diagnostics with the lineup protocol,” Journal of Computational and Graphical Statistics, Taylor & Francis, 1–19.
Long, J. A. (2022), Jtools: Analysis and presentation of social scientific data.
Loy, A. (2021), “Bringing visual inference to the classroom,” Journal of Statistics and Data Science Education, Taylor & Francis, 29, 171–182.
Loy, A., Follett, L., and Hofmann, H. (2016), “Variations of q–q plots: The power of our eyes!” The American Statistician, Taylor & Francis, 70, 202–214.
Loy, A., and Hofmann, H. (2013), “Diagnostic tools for hierarchical linear models,” Wiley Interdisciplinary Reviews: Computational Statistics, Wiley Online Library, 5, 48–61.
Loy, A., and Hofmann, H. (2014), “HLMdiag: A suite of diagnostics for hierarchical linear models in r,” Journal of Statistical Software, 56, 1–28.
Loy, A., and Hofmann, H. (2015), “Are you normal? The problem of confounded residual structures in hierarchical linear models,” Journal of Computational and Graphical Statistics, Taylor & Francis, 24, 1191–1209.
Majumder, M., Hofmann, H., and Cook, D. (2013a), “Validation of visual statistical inference, applied to linear models,” Journal of the American Statistical Association, Taylor & Francis, 108, 942–956.
Majumder, M., Hofmann, H., and Cook, D. (2013b), “Validation of visual statistical inference, applied to linear models,” Journal of the American Statistical Association, 108, 942–956. https://doi.org/10.1080/01621459.2013.808157.
Mason, H., Lee, S., Laa, U., and Cook, D. (2022), Cassowaryr: Compute scagnostics on pairs of numeric variables in a data set.
Montgomery, D. C., Peck, E. A., and Vining, G. G. (1982), Introduction to linear regression analysis, John Wiley & Sons.
Moon, K.-W. (2020), Webr: Data and functions for web-based analysis.
Müller, K. (2020), Here: A simpler way to find your files.
Nair, V., and Hinton, G. E. (2010), “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814.
Nowosad, J. (2018), ’CARTOColors’ palettes.
O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., and others (2019), “Keras Tuner,” https://github.com/keras-team/keras-tuner.
Ojeda, S. A. A., Solano, G. A., and Peramo, E. C. (2020), “Multivariate time series imaging for short-term precipitation forecasting using convolutional neural networks,” in 2020 international conference on artificial intelligence in information and communication (ICAIIC), IEEE, pp. 33–38.
Olvera Astivia, O. L., Gadermann, A., and Guhn, M. (2019), “The relationship between statistical power and predictor distribution in multilevel logistic regression: A simulation-based approach,” BMC Medical Research Methodology, BioMed Central, 19, 1–20.
Ooms, J. (2023), Magick: Advanced graphics and image-processing in r.
Palan, S., and Schitter, C. (2018), “Prolific. Ac—a subject pool for online experiments,” Journal of Behavioral and Experimental Finance, Elsevier, 17, 22–27.
Pedersen, T. L. (2022), Patchwork: The composer of plots.
PythonAnywhere LLP (2023), PythonAnywhere.”
R Core Team (2022), R: A language and environment for statistical computing, Vienna, Austria: R Foundation for Statistical Computing.
Ramsey, J. B. (1969), “Tests for specification errors in classical linear least-squares regression analysis,” Journal of the Royal Statistical Society: Series B (Methodological), Wiley Online Library, 31, 350–371.
Rawat, W., and Wang, Z. (2017), “Deep convolutional neural networks for image classification: A comprehensive review,” Neural computation, MIT Press, 29, 2352–2449.
Reinhart, A. (2024), Regressinator: Simulate and diagnose (generalized) linear models.
Rowlingson, B., and Diggle, P. (2023), Splancs: Spatial and space-time point pattern analysis.
Roy Chowdhury, N., Cook, D., Hofmann, H., Majumder, M., Lee, E.-K., and Toth, A. L. (2015), “Using visual statistical inference to better understand random class separations in high dimension, low sample size data,” Computational Statistics, Springer, 30, 293–316. https://doi.org/10.1007/s00180-014-0534-x.
Sali, A., and Attali, D. (2020), Shinycssloaders: Add loading animations to a ’shiny’ output while it’s recalculating.
Savvides, R., Henelius, A., Oikarinen, E., and Puolamäki, K. (2023), “Visual data exploration as a statistical testing procedure: Within-view and between-view multiple comparisons,” IEEE Transactions on Visualization and Computer Graphics, 29, 3937–3948. https://doi.org/10.1109/TVCG.2022.3175532.
Series, B. (2011), “Studio encoding parameters of digital television for standard 4: 3 and wide-screen 16: 9 aspect ratios,” International Telecommunication Union, Radiocommunication Sector.
Shapiro, S. S., and Wilk, M. B. (1965), “An analysis of variance test for normality (complete samples),” Biometrika, JSTOR, 52, 591–611.
Silverman, B. W. (2018), Density estimation for statistics and data analysis, Routledge.
Silvey, S. D. (1959), “The lagrangian multiplier test,” The Annals of Mathematical Statistics, JSTOR, 30, 389–407.
Simonyan, K., and Zisserman, A. (2014), “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556.
Singh, K., Gupta, G., Vig, L., Shroff, G., and Agarwal, P. (2017), “Deep convolutional neural networks for pairwise causality,” arXiv preprint arXiv:1701.00597.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014), “Dropout: A simple way to prevent neural networks from overfitting,” The journal of machine learning research, JMLR. org, 15, 1929–1958.
Tukey, J. W., and Tukey, P. A. (1985), “Computer graphics and exploratory data analysis: An introduction,” in Proceedings of the sixth annual conference and exposition: Computer graphics, pp. 773–785.
Ushey, K., Allaire, J., and Tang, Y. (2024), Reticulate: Interface to ’python’.
VanderPlas, S., and Hofmann, H. (2016), “Spatial reasoning and data displays,” IEEE Transactions on Visualization and Computer Graphics, 22, 459–468. https://doi.org/10.1109/TVCG.2015.2469125.
VanderPlas, S., Röttger, C., Cook, D., and Hofmann, H. (2021), “Statistical significance calculations for scenarios in visual inference,” Stat, Wiley Online Library, 10, e337.
Vo, N. N., and Hays, J. (2016), “Localizing and orienting street views using overhead imagery,” in Computer vision–ECCV 2016: 14th european conference, amsterdam, the netherlands, october 11–14, 2016, proceedings, part i 14, Springer, pp. 494–509.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004), “Image quality assessment: From error visibility to structural similarity,” IEEE transactions on image processing, IEEE, 13, 600–612.
Warton, D. I. (2023), “Global simulation envelopes for diagnostic plots in regression models,” The American Statistician, 77, 425–431. https://doi.org/10.1080/00031305.2022.2139294.
White, H. (1980), “A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity,” Econometrica: Journal of the Econometric Society, JSTOR, 817–838.
Wickham, H. (2016), ggplot2: Elegant graphics for data analysis, Springer-Verlag New York.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019), “Welcome to the tidyverse,” Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686.
Wickham, H., Chowdhury, N. R., Cook, D., and Hofmann, H. (2020), Nullabor: Tools for graphical inference.
Wickham, H., Cook, D., Hofmann, H., and Buja, A. (2010), “Graphical inference for infovis,” IEEE Transactions on Visualization and Computer Graphics, 16, 973–979. https://doi.org/10.1109/TVCG.2010.161.
Widen, H. M., Elsner, J. B., Pau, S., and Uejio, C. K. (2016), “Graphical inference in geographical research,” Geographical Analysis, Wiley Online Library, 48, 115–131.
Wilkinson, L., Anand, A., and Grossman, R. (2005), “Graph-theoretic scagnostics,” in Information visualization, IEEE symposium on, IEEE Computer Society, pp. 21–21.
Xie, Y. (2014), Knitr: A comprehensive tool for reproducible research in R,” in Implementing reproducible computational research, eds. V. Stodden, F. Leisch, and R. D. Peng, Chapman; Hall/CRC.
Xie, Y., Cheng, J., and Tan, X. (2024), DT: A wrapper of the JavaScript library ’DataTables’.
Yin, T., Majumder, M., Roy Chowdhury, N., Cook, D., Shoemaker, R., and Graham, M. (2013), “Visual mining methods for RNA-seq data: Data structure, dispersion estimation and significance testing,” Journal of Data Mining in Genomics and Proteomics, 4. https://doi.org/10.4172/2153-0602.1000139.
Zakai, A. (2011), “Emscripten: An LLVM-to-JavaScript compiler,” in Proceedings of the ACM international conference companion on object oriented programming systems languages and applications companion, pp. 301–312.
Zeileis, A., and Hothorn, T. (2002), “Diagnostic checking in regression relationships,” R News, 2, 7–10.
Zhang, Y., Hou, Y., Zhou, S., and Ouyang, K. (2020), “Encoding time series as multi-scale signed recurrence plots for classification using fully convolutional networks,” Sensors, MDPI, 20, 3818.
Zhang, Z., and Yuan, K.-H. (2018), Practical statistical power analysis using webpower and r, Isdsa Press.
Zhu, H. (2021), kableExtra: Construct complex table with kable and pipe syntax.